Site icon Rapid Multi

Analyzing the impact of holistic building design on the process of lifecycle management of building structures

Analyzing the impact of holistic building design on the process of lifecycle management of building structures
  • Agenda, I. Shaping the future of construction a breakthrough in mindset and technology. In World Economic Forum (2016).

  • Gizaw, G. The role of international construction for the development of economy and the challenges involved. Int. J. Eng. Sci. Comput. 11(02), 27635–27652 (2021).

    Google Scholar 

  • Alsakka, F. et al. Computer vision-based process time data acquisition for offsite construction. Autom. Constr. 149, 104803 (2023).

    Article 

    Google Scholar 

  • Askar, R., Bragança, L. & Gervásio, H. Adaptability of buildings: a critical review on the concept evolution. Appl. Sci. 11(10), 4483 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ürge-Vorsatz, D. et al. Mitigating CO2 emissions from energy use in the world’s buildings. Build. Res. Inform. 35(4), 379–398 (2007).

    Article 

    Google Scholar 

  • Sal Moslehian, A., Kocaturk, T. & Tucker, R. An Integral View of Innovation in Hospital Building Design: Understanding the Context of the Research/Practice Gap 265–280 (Building Research & Information, 2021).

  • Kosorić, V. et al. General model of Photovoltaic (PV) integration into existing public high-rise residential buildings in Singapore—challenges and benefits. Renew. Sustain. Energy Rev. 91, 70–89 (2018).

    Article 

    Google Scholar 

  • Lützkendorf, T. & Lorenz, D. Sustainable property investment: valuing sustainable buildings through property performance assessment. Build. Res. Inform. 33(3), 212–234 (2005).

    Article 

    Google Scholar 

  • Soares, N. et al. A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment. Renew. Sustain. Energy Rev. 77, 845–860 (2017).

    Article 

    Google Scholar 

  • Kamari, A. & Kirkegaard, P. H. Holistic Building Design.

  • Bonandrini, S., Cruz, C. & Nicolle, C. Building lifecycle management. In Proceedings of the International Conference on Product Lifecycle Management, Lyon, France (2005).

  • Di Biccari, C. et al. Configuration views from PLM to building lifecycle management. In Product Lifecycle Management to Support Industry 4.0: 15th IFIP WG 5.1 International Conference, PLM Turin, Italy, July 2–4, 2018, Proceedings 15 (Springer, 2018).

  • Arayici, Y. & Aouad, G. Building information modelling (BIM) for construction lifecycle management. Constr. Build. Des. Mater. Tech. 2010, 99–118 (2010).

  • Li, L. et al. Developing a BIM-enabled building lifecycle management system for owners: Architecture and case scenario. Autom. Constr. 129, 103814 (2021).

    Article 

    Google Scholar 

  • Motamedi, A. & Hammad, A. RFID-assisted lifecycle management of building components using BIM data. In Proceedings of the 26th International Symposium on Automation and Robotics in Construction (2009).

  • Balasbaneh, A. T. & Ramli, M. Z. A Comparative life Cycle Assessment (LCA) of Concrete and Steel-Prefabricated Prefinished Volumetric Construction Structures in Malaysia, 43186–43201 (Environmental Science and Pollution Research, 2020).

  • Balasbaneh, A. T. & Sher, W. Life cycle sustainability assessment analysis of different concrete construction techniques for residential building in Malaysia. Int. J. Life Cycle Assess. 26(7), 1301–1318 (2021).

    Article 
    CAS 

    Google Scholar 

  • Marjaba, G. & Chidiac, S. Sustainability and resiliency metrics for buildings—critical review. Build. Environ. 101, 116–125 (2016).

    Article 

    Google Scholar 

  • De Jong, M. et al. Sustainable–smart–resilient–low carbon–eco–knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 109, 25–38 (2015).

    Article 

    Google Scholar 

  • Lee, H. A. Labour policies and institutions in the Eleventh Malaysia Plan: Aiming high, falling short. J. Southeast. Asian Econ., 552–570 (2017).

  • Abdullah, J., Zanudin, K. & Marzukhi, M. A. Twelfth Malaysia Plan: Prospective Impacts on Urban and Regional Development (Planning Malaysia, 2022).

  • Hadi, A. N. A. & Mohamad, F. Housing Policy in 11th Malaysia Plan and Penang State Government (2016).

  • Hamid, A. A. A. et al. Malaysia–25 years of construction industry progress 1995–2019. In Construction Industry Advance and Change: Progress in Eight Asian Economies Since 1995 111–135 (Emerald Publishing Limited, 2021).

  • Riazi, S. R. M. et al. The use of supply chain management to overcome low labour productivity issues in the Tenth Malaysia Plan public sector projects. Malays. Constr. Res. J. 3(1), 178–191 (2018).

    Google Scholar 

  • Khailani, D. K. & Perera, R. Mainstreaming disaster resilience attributes in local development plans for the adaptation to climate change induced flooding: a study based on the local plan of Shah Alam City, Malaysia. Land Use Policy 30(1), 615–627 (2013).

    Article 

    Google Scholar 

  • Marsono, A. K. B. & Balasbaneh, A. T. Combinations of building construction material for residential building for the global warming mitigation for Malaysia. Constr. Build. Mater. 85, 100–108 (2015).

    Article 

    Google Scholar 

  • Lau, Y. Y. et al. Utilization of green materials and technology for sustainable construction in Malaysia. Trop. Environ. Biol. Technol. 1(1), 47–66 (2023).

  • Hung, F. C. et al. D3 sustainable homes–an alternative design for high-rise affordable housing IN tropical climates. Malays. Constr. Res. J. 25 (2018).

  • Shari, Z. & Jaafar, M. F. Z. Towards a holistic sustainable architectural education in Malaysia. ALAM CIPTA. Int. J. Sustain. Trop. Des. Res. Pract. 1(1), 57–65 (2006).

  • Masri, M., Yunus, R. M. & Ahmad, S. S. Creating cultural innovation: towards a holistic approach in shaping a sustainable future. Procedia-Soc. Behav. Sci. 168, 249–260 (2015).

    Article 

    Google Scholar 

  • Mamter, S., Abdul-Aziz, A. & Mamat, M. Stimulating a sustainable construction through holistic BIM adoption: the root causes of recurring low BIM adoption in Malaysia. In IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2017).

  • Halawa, E. et al. A review on energy conscious designs of building façades in hot and humid climates: lessons for (and from) Kuala Lumpur and Darwin. Renew. Sustain. Energy Rev. 82, 2147–2161 (2018).

    Article 

    Google Scholar 

  • Zhang, J. et al. BIM-based architectural analysis and optimization for construction 4.0 concept (a comparison). Ain Shams Eng. J. 14(6), 102110 (2023).

    Article 
    ADS 

    Google Scholar 

  • Shaikh, P. H. et al. Building energy for sustainable development in Malaysia: a review. Renew. Sustain. Energy Rev. 75, 1392–1403 (2017).

    Article 

    Google Scholar 

  • Waqar, A. et al. Examining the impact of BIM implementation on external environment of AEC industry: a PEST analysis perspective. Dev. Built Environ. 17, 100347 (2024).

    Article 

    Google Scholar 

  • Kee, K. K., Simon, B. Y. L. & Peter, S. M. W. A holistic approach for energy efficiency at a GBI-platinum rated Malaysian University campus. Adv. Sci. Lett. 24(11), 8753–8758 (2018).

    Article 

    Google Scholar 

  • Shari, Z. Development of a sustainability assessment framework for Malaysian office buildings using a mixed-methods approach (2011).

  • Waqar, A. et al. Integration of passive RFID for small-scale construction project management. Data Inform. Manag. 7(4), 100055 (2023).

    Article 

    Google Scholar 

  • Wuni, I. Y. & Shen, G. Q. Barriers to the adoption of modular integrated construction: systematic review and meta-analysis, integrated conceptual framework, and strategies. J. Clean. Prod. 249, 119347 (2020).

    Article 

    Google Scholar 

  • Waqar, A. et al. Complexities for adopting 3D laser scanners in the AEC industry: structural equation modeling. Appl. Eng. Sci. 16, 100160 (2023).

    Google Scholar 

  • Zhang, Z., Pan, W. & Pan, M. Critical considerations on tower crane layout planning for high-rise modular integrated construction. Eng. Constr. Archit. Manag. 29(7), 2615–2634 (2022).

    Article 

    Google Scholar 

  • Waqar, A. et al. BIM in green building: enhancing sustainability in the small construction project. Clean. Environ. Syst., 100149 (2023).

  • Wuni, I. Y., Shen, G. Q. & Saka, A. B. Computing the severities of critical onsite assembly risk factors for modular integrated construction projects. Eng. Constr. Archit. Manag. 30(5), 1864–1882 (2023).

    Article 

    Google Scholar 

  • Waqar, A., Khan, A. M. & Othman, I. Blockchain empowerment in construction supply chains: enhancing efficiency and sustainability for an infrastructure development. J. Infrastruct. Intell. Resil. 3(1), 100065 (2024).

    Google Scholar 

  • Afzal, M. et al. Reinforced concrete structural design optimization: a critical review. J. Clean. Prod. 260, 120623 (2020).

    Article 

    Google Scholar 

  • Waqar, A. et al. Limitations to the BIM-based safety management practices in residential construction project. Environ. Challenges 14, 100848 (2024).

    Article 

    Google Scholar 

  • Zhang, J. et al. Multi-objective optimization of concrete mixture proportions using machine learning and metaheuristic algorithms. Constr. Build. Mater. 253, 119208 (2020).

    Article 

    Google Scholar 

  • Sajjad, M. et al. BIM-driven energy simulation and optimization for net-zero tall buildings: sustainable construction management. Front. Built Environ. 10, 1296817 (2024).

    Article 

    Google Scholar 

  • Chen, X. et al. Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy Environ. Sci. 13(12), 4498–4535 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Rehman, S. K. U. et al. BIM adoption over the entire life cycle of a constructed asset and using ISO standards in Pakistan. In AIP Conference Proceedings (AIP Publishing, 2023).

  • Antwi-Afari, M. F. et al. Assessment of a passive exoskeleton system on spinal biomechanics and subjective responses during manual repetitive handling tasks among construction workers. Saf. Sci. 142, 105382 (2021).

    Article 

    Google Scholar 

  • Pan, X. et al. BIM adoption in sustainability, energy modelling and implementing using ISO 19650: a review. Ain Shams Eng. J. 15(1), 102252 (2024).

    Article 

    Google Scholar 

  • Gholamibozanjani, G. & Farid, M. A comparison between passive and active PCM systems applied to buildings. In Thermal Energy Storage with Phase Change Materials 410–429 (CRC, 2021).

  • Musarat, M. A. et al. A survey-based approach of framework development for improving the application of internet of things in the construction industry of Malaysia. Results Eng., 101823 (2024).

  • Musarat, M. A. et al. Automated monitoring innovations for efficient and safe construction practices. Results Eng. 22, 102057 (2024).

    Article 

    Google Scholar 

  • Eli, L. et al. Thermal performance of residential building with mixed-mode and passive cooling strategies: the Brazilian context. Energy Build. 244, 111047 (2021).

    Article 

    Google Scholar 

  • Maglad, A. M. et al. Bim-based energy analysis and optimization using insight 360 (case study). Case Stud. Constr. Mater. 18, e01755 (2023).

    Google Scholar 

  • Su, X. et al. Embodied and operational energy and carbon emissions of passive building in HSCW zone in China: a case study. Energy Build. 222, 110090 (2020).

    Article 

    Google Scholar 

  • Alotaibi, B. S. et al. Building information modeling (BIM) adoption for enhanced legal and contractual management in construction projects. Ain Shams Eng. J. 15 (7), 102822 (2024).

    Article 

    Google Scholar 

  • Toosi, H. A. et al. Life cycle sustainability assessment in building energy retrofitting; a review. Sustain. Cities Soc. 60, 102248 (2020).

    Article 

    Google Scholar 

  • Abuhussain, M. A. et al. Integrating Building Information Modeling (BIM) for optimal lifecycle management of complex structures. In Structures (Elsevier, 2024).

  • Rodrigues, C. & Freire, F. Environmental impacts and costs of residential building retrofits–what matters? Sustain. Cities Soc. 67, 102733 (2021).

    Article 

    Google Scholar 

  • Aati, K. et al. Analysis of road traffic accidents in dense cities: geotech transport and ArcGIS. Transp. Eng., 100256 (2024).

  • Khan, A. M. et al. Optimizing energy efficiency through building orientation and building information modelling (BIM) in diverse terrains: a case study in Pakistan. Energy, 133307 (2024).

    Google Scholar 

  • Althoey, F. et al. Influence of IoT implementation on resource management in construction. Heliyon (2024).

  • Soliman, M. H. A. Machine Reliability and Condition Monitoring: A Comprehensive Guide to Predictive Maintenance Planning (Mohammed Hamed Ahmed Soliman, 2020).

  • Hamidavi, T., Abrishami, S. & Hosseini, M. R. Towards intelligent structural design of buildings: a BIM-based solution. J. Build. Eng. 32, 101685 (2020).

    Article 

    Google Scholar 

  • Al Dakheel, J. et al. Smart buildings features and key performance indicators: a review. Sustain. Cities Soc. 61, 102328 (2020).

    Article 

    Google Scholar 

  • Hajare, A. & Elwakil, E. Integration of life cycle cost analysis and energy simulation for building energy-efficient strategies assessment. Sustain. Cities Soc. 61, 102293 (2020).

    Article 

    Google Scholar 

  • Yang, A. et al. Adopting building information modeling (BIM) for the development of smart buildings: a review of enabling applications and challenges. Adv. Civ. Eng. 2021(1), 8811476 (2021).

    Article 

    Google Scholar 

  • Xu, X., Mumford, T. & Zou, P. X. Life-cycle building information modelling (BIM) engaged framework for improving building energy performance. Energy Build. 231, 110496 (2021).

    Article 

    Google Scholar 

  • Abuhussain, M. A. et al. Integrating building information modeling (BIM) for optimal lifecycle management of complex structures. Structures 60 (2024).

  • Asif, U. et al. Predictive modeling and experimental validation for assessing the mechanical properties of cementitious composites made with silica fume and ground granulated blast furnace slag. Buildings 14(4) (2024).

  • Bageis, A. S. et al. Evaluation of factors affecting the competitive advantage of organizations in establishing sustainable project management post Covid-19. J. Eng. 2023, 1–24 (2023).

    Article 

    Google Scholar 

  • Carlier, R., Dabbagh, M. & Krarti, M. Energy performance of integrated wall and window switchable insulated systems for residential buildings. Energies 15(3) (2022).

  • Hamida, M. B. et al. Circular building adaptability and its determinants—a literature review. Int. J. Build. Pathol. Adapt. 41(6), 47–69 (2023).

    Article 
    MathSciNet 

    Google Scholar 

  • Lee, M. J. & Zhang, R. Human-centric artificial intelligence of things-based indoor environment quality modeling framework for supporting student well-being in educational facilities. J. Comput. Civ. Eng. 38(2) (2024).

  • Munaro, M. R. & Tavares, S. F. Design for Adaptability and Disassembly: Guidelines for Building Deconstruction (Construction Innovation, 2023).

  • Saad Alotaibi, B. et al. Building information modeling (BIM) adoption for enhanced legal and contractual management in construction projects. Ain Shams Eng. J. 15(7) (2024).

  • Miller, D. & Doh, J. H. Incorporating sustainable development principles into building design: a review from a structural perspective including case study. Struct. Des. Tall Spec. Build. 24(6), 421–439 (2015).

    Article 

    Google Scholar 

  • Sajjad, M. et al. BIM-driven energy simulation and optimization for net-zero tall buildings: sustainable construction management. Front. Built Environ. 10 (2024).

  • Iwaro, J. & Mwasha, A. The impact of sustainable building envelope design on building sustainability using integrated performance model. Int. J. Sustain. Built Environ. 2(2), 153–171 (2013).

    Article 

    Google Scholar 

  • Waqar, A. et al. Impediment to implementation of internet of things (IOT) for oil and gas construction project safety: structural equation modeling approach. Structures 57 (2023).

  • Gosling, J. et al. Adaptable buildings: a systems approach. Sustain. Cities Soc. 7, 44–51 (2013).

    Article 

    Google Scholar 

  • Waqar, A. et al. Evaluation of Challenges to the Adoption of Intelligent Transportation System for Urban Smart Mobility (Research in Transportation Business and Management, 2023).

  • Gharehbaghi, K., Rahmani, F. & Paterno, D. Adaptability of materials in green buildings: Australian case studies and review. In IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2020).

  • Waqar, A. et al. Evaluation of success factors of utilizing AI in digital transformation of health and safety management systems in modern construction projects. Ain Shams Eng. J. 14(11) (2023).

  • Pender, R. Making good decisions: avoiding alignment problems and maladaptation in retrofit and construction. J. Archit. Conserv. 27(3), 151–175 (2021).

    Google Scholar 

  • Waqar, A., Bheel, N. & Tayeh, B. A. Modeling the effect of implementation of artificial intelligence powered image analysis and pattern recognition algorithms in concrete industry. Dev. Built Environ. 17 (2024).

  • Fatourehchi, D. & Zarghami, E. Social sustainability assessment framework for managing sustainable construction in residential buildings. J. Build. Eng. 32, 101761 (2020).

    Article 

    Google Scholar 

  • Waqar, A. et al. Sustainable leadership practices in construction: building a resilient society. Environ. Challenges, 14 (2024).

  • Mohajerani, A. et al. Recycling waste rubber tyres in construction materials and associated environmental considerations: a review. Resour. Conserv. Recycl. 155, 104679 (2020).

    Article 

    Google Scholar 

  • Waqar, A., Mateen Khan, A. & Othman, I. Blockchain empowerment in construction supply chains: enhancing efficiency and sustainability for an infrastructure development. J. Infrastruct. Intell. Resil. 3(1) (2024).

  • Waqar, A. et al. Overcoming implementation barriers in 3D printing for gaining positive influence considering PEST environment. Ain Shams Eng. J. 15(3) (2024).

  • Waqar, A. et al. Modeling relation among implementing AI-based drones and sustainable construction project success. Front. Built Environ., 9 (2023).

  • Waqar, A. et al. Modeling the relation between building information modeling and the success of construction projects: a structural-equation-modeling approach. Appl. Sci. 13(15) (2023).

  • Lima, L. et al. Sustainability in the construction industry: a systematic review of the literature. J. Clean. Prod. 289, 125730 (2021).

    Article 

    Google Scholar 

  • Waqar, A. et al. Complexities for adopting 3D laser scanners in the AEC industry: structural equation modeling. Appl. Eng. Sci., 16 (2023).

  • Francis, A. & Thomas, A. Exploring the relationship between lean construction and environmental sustainability: a review of existing literature to decipher broader dimensions. J. Clean. Prod. 252, 119913 (2020).

    Article 

    Google Scholar 

  • Waqar, A. et al. Analyzing the success of adopting metaverse in construction industry: structural equation modelling. J. Eng. 2023, 1–21 (2023).

    Article 

    Google Scholar 

  • Hossain, M. U. et al. Circular economy and the construction industry: existing trends, challenges and prospective framework for sustainable construction. Renew. Sustain. Energy Rev. 130, 109948 (2020).

    Article 

    Google Scholar 

  • Waqar, A. et al. Evaluating the critical safety factors causing accidents in downstream oil and gas construction projects in Malaysia. Ain Shams Eng. J. 15(1) (2024).

  • Araújo, A. G., Carneiro, A. M. P. & Palha, R. P. Sustainable construction management: a systematic review of the literature with meta-analysis. J. Clean. Prod. 256, 120350 (2020).

    Article 

    Google Scholar 

  • link

    Exit mobile version