November 7, 2024

Rapid Multi

Transforming Spaces, Enriching Lives

Ultrastable cathodes enabled by compositional and structural dual-gradient design

Ultrastable cathodes enabled by compositional and structural dual-gradient design
  • Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article 

    Google Scholar 

  • Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium‐ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article 

    Google Scholar 

  • Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article 

    Google Scholar 

  • Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016).

    Article 

    Google Scholar 

  • Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    Article 

    Google Scholar 

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 

    Google Scholar 

  • Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article 

    Google Scholar 

  • Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).

    Article 

    Google Scholar 

  • Liu, T. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotech. 14, 50–56 (2019).

    Article 

    Google Scholar 

  • Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article 

    Google Scholar 

  • Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article 

    Google Scholar 

  • Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article 

    Google Scholar 

  • Thackeray, M. M. & Amine, K. Layered Li–Ni–Mn–Co oxide cathodes. Nat. Energy 6, 933 (2021).

    Article 

    Google Scholar 

  • Wang, L., Liu, T., Wu, T. & Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611, 61–67 (2022).

    Article 

    Google Scholar 

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article 

    Google Scholar 

  • Liu, T. et al. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat. Commun. 12, 6024 (2021).

    Article 

    Google Scholar 

  • Lin, F. et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries. Nat. Energy 1, 1–8 (2016).

    Article 

    Google Scholar 

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021).

    Article 

    Google Scholar 

  • Gao, H. et al. Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode. Chem. Mater. 31, 2723–2730 (2019).

    Article 

    Google Scholar 

  • Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article 

    Google Scholar 

  • Clément, R., Lun, Z. & Ceder, G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy Environ. Sci. 13, 345–373 (2020).

    Article 

    Google Scholar 

  • Huang, J. et al. Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nat. Energy 6, 706–714 (2021).

    Article 

    Google Scholar 

  • Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).

    Article 

    Google Scholar 

  • Zhao, W. et al. High voltage operation of Ni‐rich NMC cathodes enabled by stable electrode/electrolyte interphases. Adv. Energy Mater. 8, 1800297 (2018).

    Article 

    Google Scholar 

  • Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article 

    Google Scholar 

  • Tan, S. et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 7, 484–494 (2022).

    Article 

    Google Scholar 

  • Xu, J. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature (2023).

  • Cheng, X. et al. Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy. ACS Energy Lett. 6, 1703–1710 (2021).

    Article 

    Google Scholar 

  • Heenan, T. M. et al. Identifying the origins of microstructural defects such as cracking within Ni‐rich NMC811 cathode particles for lithium‐ion batteries. Adv. Energy Mater. 10, 2002655 (2020).

    Article 

    Google Scholar 

  • Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article 

    Google Scholar 

  • Sun, Y.-K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    Article 

    Google Scholar 

  • Wang, L. et al. Regulation of surface defect chemistry toward stable Ni‐rich cathodes. Adv. Mater. 34, 2200744 (2022).

    Article 

    Google Scholar 

  • Satish, R. et al. Exposure history and its effect towards stabilizing Li exchange across disordered rock salt interfaces. Chem. Electro Chem. 8, 3982–3991 (2021).

    Google Scholar 

  • Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Article 

    Google Scholar 

  • Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361 (2017).

    Article 

    Google Scholar 

  • Xiao, B. & Sun, X. Surface and subsurface reactions of lithium transition metal oxide cathode materials: an overview of the fundamental origins and remedying approaches. Adv. Energy Mater. 8, 1802057 (2018).

    Article 

    Google Scholar 

  • Qiao, R. et al. Transition-metal redox evolution in LiNi0.5Mn0.3Co0.2O2 electrodes at high potentials. J. Power Sources 360, 294–300 (2017).

    Article 

    Google Scholar 

  • Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article 

    Google Scholar 

  • Sun, H. H. et al. Beyond doping and coating: prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett. 5, 1136–1146 (2020).

    Article 

    Google Scholar 

  • Li, J. et al. Dynamics of particle network in composite battery cathodes. Science 376, 517–521 (2022).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.