April 1, 2025

Rapid Multi

Transforming Spaces, Enriching Lives

A novel simplified structural design as an artificial enzyme for efficient hydrolysis of PNPA

A novel simplified structural design as an artificial enzyme for efficient hydrolysis of PNPA
  • Murakami, Y., Kikuchi, J. I., Hisaeda, Y. & Hayashida, O. Artificial enzymes. Chem. Rev. 96, 721–758 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wallimann, P., Mattei, S., Seiler, P. & Diederich, F. New cyclophanes as initiator cores for the const- ruction of dendritic receptors: Host-guest complexation in aqueous solutions and structures of solid-state inclusion compounds. Helv. Chim. Acta. 80, 2368–2390 (1997).

    Article 
    CAS 

    Google Scholar 

  • Benkovic, S. J. & Hammes-Schiffer A perspective on Pnzyme catalysis. Science 301, 1196 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hammes-Schiffer, S. & Benkovic, S. J. Relating protein motion to catalysis. Annu. Rev. Biochem. 75, 519 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, Z. Y., Luo, Q. & Liu, J. Q. Artificial enzymes based on supramolecular scaffolds. Chem. Soc. Rev. 41, 7890–7908 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Merlo, C., Dill, K. A. & Weikl, T. R. Φ values in protein-folding kinetics have energetic and structural components. Proc. Natl. Acad. Sci. U S A. 102, 10171–10175 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Resmini, M. Molecularly imprinted polymers as biomimetic catalysts. Anal. Bioanal Chem. 402, 3021–3026 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wu, J. et al. Nanomaterials with Enzyme- like characteristics (Nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Buhleier, E., Wehner, W. & Vögtle, F. Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis-Stuttgart 2, 155–158 (1978).

    Article 

    Google Scholar 

  • Tomalia, D. A. et al. A new class of polymers: starburst-dendritic macromolecules. J. Polym. 17, 117–132 (1985).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Lombardo, V., Bonomi, R., Sissi, C. & Mancin, F. Phosphate diesters and DNA hydrolysis by dinuclear Zn(II) complexes featuring a disulfide Bridge and H-bond donors. Tetrahedron 66, 2189–2195 (2010).

    Article 
    CAS 

    Google Scholar 

  • Gao, H. et al. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: A density functional theory study. J. Am. Chem. Soc. 9, 2904–2915 (2011).

    Article 
    MATH 

    Google Scholar 

  • Pengo, P., Polizzi, S., Pasquato, L. & Scrimin, P. Carboxylate-Imidazole cooperativity in dipeptide-functionalized gold nanoparticles with esterase-like activity. J. Am. Chem. Soc. 127, 1616–1617 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pengo, P., Baltzer, L., Pasquato, L. & Scrimin, P. Substrate modulation of the activity of an artificial nanoesterase made of peptide-functionalized gold nanoparticles. Angew Chem. Int. Ed. 46, 400–404 (2007).

    Article 
    CAS 

    Google Scholar 

  • Manea, F., Houillon, F. B., Pasquato, L., Scrimin, P. & Nanozymes Gold-nanoparticle-based transphosphorylation catalysts. Angew Chem. Int. Ed. 43, 6165–6169 (2004).

    Article 
    CAS 

    Google Scholar 

  • Pasquato, L., Rancan, F., Scrimin, P., Mancin, F. & Frigeri, C. N-methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester. Chem. Commun. 20, 2253–2254 (2000).

    Article 

    Google Scholar 

  • Gea, A. et al. Solid-supported synthesis of highly functionalized tripodal peptides with flexible but preorganized geometry: towards potential Serine protease mimics. Eur. J. Org. Chem. 71, 4135–4146 (2006).

    Article 
    MATH 

    Google Scholar 

  • Rossi, P. et al. An azacrown-functionalized peptide as a metal ion based catalyst for the cleavage of a RNA-model substrate. Biopolymers 55, 496–501 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Bernhardt, P. V. et al. An approach to more accurate model systems for purple acid phosphatases (PAPs). Inorg. Chem. 54, 7249–7263 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Bosch, S., Comba, P., Gahan, L. R. & Schenk, G. Dinuclear zinc(ii) complexes with hydrogen bond donors as structural and functional phosphatase models. Inorg. Chem. 53, 9036–9051 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bosch, S. et al. Selective coordination of gallium(iii), zinc(ii), and copper(ii) by an asymmetric dinucleating ligand: a model for metallophosphatases. Chem. Eu J. 21, 18269–18279 (2015).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Comba, P., Gahan, L. R., Mereacre, V., Hanson, G. R. & Zajaczkowski-Fischer, M. Spectroscopic characterization of the active FeIIIFeIII and FeIIIFeII forms of a purple acid phosphatase model system. Inorg. Chem. 51, 12195–12209 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mendes, L. L. et al. Metallohydrolase biomimetics with catalytic and structural flexibility. Dalton Trans. 45, 18510–18521 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Norberto, Douglas, R. et al. Second-Sphere effects in dinuclear Fe(III) zn(II) hydrolase biomimetics: tuning binding and reactivity properties. Inorg. Chem. 57, 187–203 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Comba, P. et al. Monoesterase activity of a purple acid phosphatase mimic with a cyclam platform. Chemistry. Chem. Eur. J. 18, 1700–1710 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jayasinghearachchige, V. M. et al. Elucidating the roles of distinct chemical factors in the hydrolytic activities of hetero- and homonuclear synthetic analogues of binuclear metalloenzymes. ACS Catal. 13, 3131–3147 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Pereira, C., Farias, G., Maranha, F. G., Castilho, N. & Peralta, R. A. Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA. J. Biol. Inorg. Chem. 24, 675–691 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akkaya, E. U. & Czarnik, A. W. Synthesis and reactivity of cobalt(III) complexes bearing primary-side and secondary-side cyclodextrin binding-sites – A Tale of 2 CDS. J. Am. Chem. Soc. 110, 8553–8554 (1988).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Briggs, G. E. & Haldane, J. B. S. A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lnznaster, M. et al. J. Biol. Inorg. Chem. 10, 319–332 (2005).

    Article 

    Google Scholar 

  • Mitić, N. et al. The catalytic mechanisms of binuclear metallohydrolases. Chem. Rev. 106, 3338–3363 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Neves, A. et al. An unprecedented FeIII(µ-OH)ZnII complex that mimics the structural and functional properties of purple acid phosphatases. J. Am. Chem. Soc. 129, 7486–7487 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.