November 15, 2025

Rapid Multi

Transforming Spaces, Enriching Lives

Additively manufactured metallic TPMS lattice structures: design strategies, fabrication, multifunctional properties, and applications

Additively manufactured metallic TPMS lattice structures: design strategies, fabrication, multifunctional properties, and applications
  • Lu, K. The future of metals. Science 328, 319–320 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, L.-Y., Liang, S.-X., Liu, Y. & Zhang, L.-C. Additive manufacturing of metallic lattice structures: unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater. Sci. Eng. R Rep. 146, 100648 (2021).

    Article 

    Google Scholar 

  • Yeo, S. J., Oh, M. J. & Yoo, P. J. Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Adv. Mater. 31, 1803670 (2019).

    Article 

    Google Scholar 

  • Yang, Y. et al. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures. Adv. Mater 30, 1706539 (2018).

    Article 

    Google Scholar 

  • Dercz, G. et al. Synthesis of porous Ti–50Ta alloy by powder metallurgy. Mater. Charact. 142, 124–136 (2018).

    Article 
    CAS 

    Google Scholar 

  • Crupi, V., Epasto, G. & Guglielmino, E. Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam. Mar. Struct. 30, 74–96 (2013).

    Article 

    Google Scholar 

  • Banhart, J. Manufacturing routes for metallic foams. JOM 52, 22–27 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cheung, K. C. & Gershenfeld, N. Reversibly assembled cellular composite materials. Science 341, 1219–1221 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • van Grunsven, W., Hernandez-Nava, E., Reilly, G. & Goodall, R. Fabrication and mechanical characterisation of titanium lattices with graded porosity. Metals 4, 401–409 (2014).

    Article 

    Google Scholar 

  • Heinl, P., Müller, L., Körner, C., Singer, R. F. & Müller, F. A. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536–1544 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ajdari, A., Nayeb-Hashemi, H. & Vaziri, A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures. Int. J. Solids Struct. 48, 506–516 (2011).

    Article 

    Google Scholar 

  • Cheah, C. M., Chua, C. K., Lee, C. W., Feng, C. & Totong, K. Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. Int. J. Adv. Manuf. Technol. 25, 308–320 (2005).

    Article 

    Google Scholar 

  • Singh, S. & Singh, R. Precision investment casting: a state of art review and future trends. Proc. Inst. Mech. Eng. B J. Eng.Manuf. 230, 2143–2164 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sharp, K., Mungalov, D. & Brown, J. Metallic cellular materials produced by 3D weaving. Procedia Mater. Sci. 4, 15–20 (2014).

    Article 

    Google Scholar 

  • Khoda, B., Ahsan, A. M. M. N., Shovon, A. N. & Alam, A. I. 3D metal lattice structure manufacturing with continuous rods. Sci. Rep. 11, 434 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ariff, Z. M., Afolabi, L. O., Salmazo, L. O. & Rodriguez-Perez, M. A. Effectiveness of microwave processing approach and green blowing agents usage in foaming natural rubber. J. Mater. Res. Technol. 9, 9929–9940 (2020).

    Article 
    CAS 

    Google Scholar 

  • Luukkonen, T. et al. Ag- or Cu-modified geopolymer filters for water treatment manufactured by 3D printing, direct foaming, or granulation. Sci. Rep. 10, 7233 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arifvianto, B. & Zhou, J. Fabrication of metallic biomedical scaffolds with the space holder method: a review. Materials 7, 3588–3622 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parvizi, S., Hashemi, S. M., Asgarinia, F., Nematollahi, M. & Elahinia, M. Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: a review. Prog. Mater. Sci. 117, 100739 (2021).

    Article 
    CAS 

    Google Scholar 

  • Queheillalt, D. T. & Wadley, H. N. G. Titanium alloy lattice truss structures. Mater. Design 30, 1966–1975 (2009).

    Article 
    CAS 

    Google Scholar 

  • Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, S., Sun, F., Zhang, X. & Fan, H. Interlocking orthogrid: an efficient way to construct lightweight lattice-core sandwich composite structure. Compos. Struct. 176, 55–71 (2017).

    Article 

    Google Scholar 

  • Liu, S. et al. Superelastic behavior of in-situ eutectic-reaction manufactured high strength 3D porous NiTi-Nb scaffold. Scripta Mater. 181, 121–126 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ablat, M. A. & Qattawi, A. Investigating the design and process parameters of folded perforated sheet metal. Int. J. Adv. Manuf. Technol. 102, 615–633 (2019).

    Article 

    Google Scholar 

  • Wadley, H. N. G., Dharmasena, K. P., O’Masta, M. R. & Wetzel, J. J. Impact response of aluminum corrugated core sandwich panels. Int. J. Impact Eng. 62, 114–128 (2013).

    Article 
    ADS 

    Google Scholar 

  • Wang, L. et al. Microstructure evolution and superelasticity of layer-like NiTiNb porous metal prepared by eutectic reaction. Acta Mater. 143, 214–226 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Thompson, M. K. et al. Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. 65, 737–760 (2016).

    Article 

    Google Scholar 

  • Maconachie, T. et al. SLM lattice structures: Properties, performance, applications and challenges. Mater. Design 183, 108137 (2019).

    Article 

    Google Scholar 

  • Mazur, M. et al. Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int. J. Adv. Manuf. Technol. (2015).

  • Yan, C., Hao, L., Hussein, A. & Raymont, D. Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. ToolsManuf.62, 32–38 (2012).

    Article 

    Google Scholar 

  • Yan, C., Hao, L., Hussein, A. & Young, P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. 51, 61–73 (2015).

    Article 
    CAS 

    Google Scholar 

  • Yoo, D. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds. Med. Eng. Phys. 34, 762–776 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Yoo, D.-J. Recent trends and challenges in computer-aided design of additive manufacturing-based biomimetic scaffolds and bioartificial organs. Int. J. Precis. Eng. Manuf 15, 2205–2217 (2014).

    Article 

    Google Scholar 

  • Wang, Y. Periodic surface modeling for computer aided nano design. Comput. Aided Design 39, 179–189 (2007).

    Article 

    Google Scholar 

  • Al-Ketan, O. & Abu Al-Rub, R. K. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv. Eng. Mater. 21, 1900524 (2019).

    Article 

    Google Scholar 

  • Deng, Y. et al. Cubic membrane structure in amoeba (Chaos carolinensis) mitochondria determined by electron microscopic tomography. J. Struct. Biol. 127, 231–239 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gan, Z., Turner, M. D. & Gu, M. Biomimetic gyroid nanostructures exceeding their natural origins. Sci. Adv. 2, e1600084 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, X. et al. Bioinspired hierarchical diamond triply periodic minimal surface lattices with high energy absorption and damage tolerance. Addit. Manuf. 76, 103792 (2023).

    CAS 

    Google Scholar 

  • Han, L. & Che, S. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv. Mater. 30, 1705708 (2018).

    Article 

    Google Scholar 

  • Fee, C. 3D-printed porous bed structures. Curr. Opin. Chem. Eng. 18, 10–15 (2017).

    Article 

    Google Scholar 

  • Fisher, J. W., Miller, S. W., Bartolai, J., Simpson, T. W. & Yukish, M. A. Catalog of triply periodic minimal surfaces, equation-based lattice structures, and their homogenized property data. Data Brief 49, 109311 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sychov, M. M., Lebedev, L. A., Dyachenko, S. V. & Nefedova, L. A. Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology. Acta Astronaut. 150, 81–84 (2018).

    Article 
    ADS 

    Google Scholar 

  • Teng, F., Sun, Y., Guo, S., Gao, B. & Yu, G. Topological and mechanical properties of different lattice structures based on additive manufacturing. Micromachines 13, 1017 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montazerian, H., Davoodi, E., Asadi-Eydivand, M., Kadkhodapour, J. & Solati-Hashjin, M. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties. Mater. Design 126, 98–114 (2017).

    Article 
    CAS 

    Google Scholar 

  • Al-Ketan, O., Lee, D.-W., Rowshan, R. & Abu Al-Rub, R. K. Functionally graded and multi-morphology sheet TPMS lattices: design, manufacturing, and mechanical properties. J. Mech. Behav. Biomed. 102, 103520 (2020).

    Article 

    Google Scholar 

  • Wang, S. et al. The design of Ti6Al4V primitive surface structure with symmetrical gradient of pore size in biomimetic bone scaffold. Mater. Design 193, 108830 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rho, J.-Y., Kuhn-Spearing, L. & Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Majeed, M., Khan, H. M., Wheatley, G. & Situ, R. Influence of post-processing on additively manufactured lattice structures. J. Braz. Soc. Mech. Sci. 44, 389 (2022).

    Google Scholar 

  • Maskery, I. et al. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Mater. Design 155, 220–232 (2018).

    Article 

    Google Scholar 

  • Yoo, D.-J. & Kim, K.-H. An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function. Int. J. Precis. Eng. Manuf. 16, 2021–2032 (2015).

    Article 

    Google Scholar 

  • Vijayavenkataraman, S., Zhang, L., Zhang, S., Hsi Fuh, J. Y. & Lu, W. F. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design. Acs Appl Bio Mater 1, 259–269 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker, J. M. et al. Design and mechanical characterization of solid and highly porous 3D printed poly(propylene fumarate) scaffolds. Prog Addit Manuf 2, 99–108 (2017).

    Article 

    Google Scholar 

  • Yoo, D.-J. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Man 12, 61–71 (2011).

    Article 

    Google Scholar 

  • Feng, J., Fu, J., Shang, C., Lin, Z. & Li, B. Porous scaffold design by solid T-splines and triply periodic minimal surfaces. Comput Method Appl M 336, 333–352 (2018).

    Article 
    MathSciNet 

    Google Scholar 

  • Hu, C. & Lin, H. Heterogeneous porous scaffold generation using trivariate B-spline solids and triply periodic minimal surfaces. Graph Models 115, 101105 (2021).

    Article 

    Google Scholar 

  • Feng, J. et al. Efficient generation strategy for hierarchical porous scaffolds with freeform external geometries. Addit Manuf 31, 100943 (2020).

    Google Scholar 

  • Wang, R. et al. Effect of topological characteristics on manufacturability and mechanical performance of multiscale graded structures fabricated by laser powder bed fusion. Journal of Materials Processing Technology 337, 118721 (2025).

    Article 

    Google Scholar 

  • Panesar, A., Abdi, M., Hickman, D. & Ashcroft, I. Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing. Addit Manuf 19, 81–94 (2018).

    Google Scholar 

  • Li, D., Dai, N., Tang, Y., Dong, G. & Zhao, Y. F. Design and Optimization of Graded Cellular Structures With Triply Periodic Level Surface-Based Topological Shapes. Journal of Mechanical Design 141, 071402 (2019).

    Article 

    Google Scholar 

  • Dowling, L., Kennedy, J., O’Shaughnessy, S. & Trimble, D. A review of critical repeatability and reproducibility issues in powder bed fusion. Mater Design 186, 108346 (2020).

    Article 
    CAS 

    Google Scholar 

  • Han, C. et al. Recent Advances on High-Entropy Alloys for 3D Printing. Adv. Mater. 32, 1903855 (2020).

    Article 
    CAS 

    Google Scholar 

  • Putra, N. E. et al. Extrusion-based 3D printed biodegradable porous iron. Acta Biomater 121, 741–756 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mishra, D. K. & Pandey, P. M. Effects of morphological characteristics on the mechanical behavior of 3D printed ordered pore topological Fe scaffold. Materials Science and Engineering: A 804, 140759 (2021).

    Article 
    CAS 

    Google Scholar 

  • Penumakala, P. K., Santo, J. & Thomas, A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos Part B-eng 201, 108336 (2020).

    Article 
    CAS 

    Google Scholar 

  • Choi, W. J. et al. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Materials Science and Engineering: C 110, 110693 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Shen, L. et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal–rhabsganic frameworks. Adv. Mater. 30, 1707476 (2018).

    Article 

    Google Scholar 

  • Zhang, G., Guo, J., Chen, H. & Cao, Y. Organic mesh template-based laminated object manufacturing to fabricate ceramics with regular micron scaled pore structures. J. Eur. Ceramic Soc. 41, 2790–2795 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhou, X. & Liu, C. Three-dimensional printing for catalytic applications: current status and perspectives. Adv. Funct. Mater. 27, 30 (2017).

  • Peng, X. et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit. Manuf. 40, 101911 (2021).

    CAS 

    Google Scholar 

  • Peng, E., Zhang, D. & Ding, J. Ceramic robocasting: recent achievements, potential, and future developments. Adv. Mater. 30, 1802404 (2018).

    Article 

    Google Scholar 

  • Ziaee, M. & Crane, N. B. Binder jetting: a review of process, materials, and methods. Addit. Manuf. 28, 781–801 (2019).

    CAS 

    Google Scholar 

  • Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    Article 
    CAS 

    Google Scholar 

  • Gibson, M. A. et al. 3D printing metals like thermoplastics: fused filament fabrication of metallic glasses. Mater. Today 21, 697–702 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chawake, N. On Joule heating during spark plasma sintering of metal powders. Scripta Mater. 93, 52–55 (2014).

  • Sukhotskiy, V. et al. Magnetohydrodynamic drop-on-demand liquid metal additive manufacturing: system overview and modelling. In Pro. 5th International Conference of Fluid Flow, Heat and Mass Transfer (2018).

  • Simonelli, M. et al. Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting. Addit. Manuf. 30, 100930 (2019).

    CAS 

    Google Scholar 

  • Daalkhaijav, U., Yirmibesoglu, O. D., Walker, S. & Mengüç, Y. Rheological modification of liquid metal for additive manufacturing of stretchable electronics. Adv Mater. Technol. 3, 1700351 (2018).

    Article 

    Google Scholar 

  • Sundaram, M. M., Kamaraj, A. B. & Kumar, V. S. Mask-less electrochemical additive nanufacturing: a feasibility sudy. J. Manuf. Sci. Eng. 137, 021006 (2015).

    Article 

    Google Scholar 

  • Brant, A. & Sundaram, M. A novel electrochemical micro additive manufacturing method of overhanging metal parts without reliance on support structures. Procedia Manuf. 5, 928–943 (2016).

    Article 

    Google Scholar 

  • Kamaraj, A. B. & Sundaram, M. A study on the effect of inter-electrode gap and pulse voltage on current density in electrochemical additive manufacturing. J. Appl. Electrochem. 48, 463–469 (2018).

    Article 
    CAS 

    Google Scholar 

  • Prashar, G. & Vasudev, H. A comprehensive review on sustainable cold spray additive manufacturing: state of the art, challenges and future challenges. J. Clean. Prod. 310, 127606 (2021).

    Article 

    Google Scholar 

  • Vanerio, D., Kondas, J., Guagliano, M. & Bagherifard, S. 3D modelling of the deposit profile in cold spray additive manufacturing. J. Manuf. Process. 67, 521–534 (2021).

    Article 

    Google Scholar 

  • Marzbanrad, B., Toyserkani, E. & Jahed, H. Customization of residual stress induced in cold spray printing. J. Mater. Process. Technol. 289, 116928 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rokni, M. R., Nutt, S. R., Widener, C. A., Champagne, V. K. & Hrabe, R. H. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. J. Therm. Spray Technol. 26, 1308–1355 (2017).

    Article 
    ADS 

    Google Scholar 

  • Liu, S., Stebner, A. P., Kappes, B. B. & Zhang, X. Machine learning for knowledge transfer across multiple metals additive manufacturing printers. Addit. Manuf. 39, 101877 (2021).

    CAS 

    Google Scholar 

  • Yao, L., Ramesh, A., Xiao, Z., Chen, Y. & Zhuang, Q. Multimetal research in powder bed fusion: a review. Materials 16, 4287 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harun, W. S. W. et al. A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. 331, 74–97 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, X. J., Zhang, L. C., Fang, M. H. & Sercombe, T. B. The effect of atmosphere on the structure and properties of a selective laser melted Al–12Si alloy. Mater. Sci. Eng. A 597, 370–375 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L.-C. & Attar, H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv. Eng. Mater. 18, 463–475 (2016).

    Article 
    CAS 

    Google Scholar 

  • Attar, H. et al. Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 76, 13–22 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yang, C. et al. High strength bioinspired cellular metallic glasses with excellent energy absorption. Acta Mater. 285, 120688 (2025).

    Article 
    CAS 

    Google Scholar 

  • Ding, J. et al. Imperfection-enabled strengthening of ultra-lightweight lattice materials. Adv. Sci. 11, 2402727 (2024).

    Article 

    Google Scholar 

  • Amin Yavari, S. et al. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Addit. Manuf. 32, 100991 (2020).

    CAS 

    Google Scholar 

  • Al-Ketan, O., Rowshan, R. & Abu Al-Rub, R. K. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit. Manuf. 19, 167–183 (2018).

    Google Scholar 

  • Fan, X. et al. Design, mechanical properties and energy absorption capability of graded-thickness triply periodic minimal surface structures fabricated by selective laser melting. Int. J. Mech. Sci. 204, 106586 (2021).

    Article 

    Google Scholar 

  • Ma, S. et al. Manufacturability, mechanical properties, mass-transport properties and biocompatibility of triply periodic minimal surface (TPMS) porous scaffolds fabricated by selective laser melting. Mater. Design 195, 109034 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X.-Y., Yan, X.-C., Fang, G. & Liu, M. Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface. Addit. Manuf. 32, 101015 (2020).

    CAS 

    Google Scholar 

  • Kelly, C. N. et al. Functional repair of critically sized femoral defects treated with bioinspired titanium gyroid-sheet scaffolds. J. Mech. Behav. Biomed.Mater. 116, 104380 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ramazani, H. & Kami, A. Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review. Prog. Addit. Manuf. 7, 609–626 (2022).

    Article 

    Google Scholar 

  • Sadaf, M., Bragaglia, M. & Nanni, F. A simple route for additive manufacturing of 316L stainless steel via fused filament fabrication. J. Manuf. Process. 67, 141–150 (2021).

    Article 

    Google Scholar 

  • Sadaf, M., Bragaglia, M., Slemenik Perše, L. & Nanni, F. Advancements in metal additive manufacturing: a comprehensive review of material extrusion with highly filled polymers. J. Manuf. Mater. Process. 8, 14 (2024).

    CAS 

    Google Scholar 

  • Wang, F., You, S., Jiang, D. & Ning, F. Study on sintering mechanism for extrusion-based additive manufacturing of stainless steel through molecular dynamics simulation. Addit. Manuf. 58, 102991 (2022).

    CAS 

    Google Scholar 

  • Rosnitschek, T. et al. Dimensional accuracy and mechanical characterization of inconel 625 components in atomic diffusion additive manufacturing. Appl. Mech. 5, 376–390 (2024).

    Article 

    Google Scholar 

  • Mostafaei, A., Stevens, E. L., Ference, J. J., Schmidt, D. E. & Chmielus, M. Binder jetting of a complex-shaped metal partial denture framework. Addit. Manuf. 21, 63–68 (2018).

    Google Scholar 

  • Xie, Y. et al. Mechanical responses of triply periodic minimal surface gyroid lattice structures fabricated by binder jetting additive manufacturing. J. Mater. Res. Technol. 35, 2803–2814 (2025).

    Article 
    CAS 

    Google Scholar 

  • Zhao, K. et al. Review of the types, formation mechanisms, effects, and elimination methods of binder jetting 3D-printing defects. J. Mater. Res. Technol. 27, 5449–5469 (2023).

    Article 

    Google Scholar 

  • Hernández-Nava, E. et al. The effect of defects on the mechanical response of Ti-6Al-4V cubic lattice structures fabricated by electron beam melting. Acta Mater. 108, 279–292 (2016).

    Article 
    ADS 

    Google Scholar 

  • Sun, Q., Sun, J., Guo, K. & Liu, J. Investigation on mechanical properties and energy absorption capabilities of AlSi10Mg triply periodic minimal surface sheet structures fabricated via selective laser melting. J. Mater. Eng. Perform. 31, 9110–9121 (2022).

    Article 
    CAS 

    Google Scholar 

  • Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I. & Everitt, N. M. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A 667, 139–146 (2016).

    Article 
    CAS 

    Google Scholar 

  • Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J. & Ashcroft, I. A. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit. Manuf. 16, 24–29 (2017).

    CAS 

    Google Scholar 

  • Al-Ketan, O., Rowshan, R., Palazotto, A. N. & Abu Al-Rub, R. K. On mechanical properties of cellular steel solids with shell-like periodic architectures fabricated by selective laser sintering. J. Eng. Mater. Technol. 141, 021009 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yan, C., Hao, L., Hussein, A., Wei, Q. & Shi, Y. Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting. Mater. Sci. Eng. C 75, 1515–1524 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ataee, A., Li, Y., Fraser, D., Song, G. & Wen, C. Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater. Design 137, 345–354 (2018).

    Article 
    CAS 

    Google Scholar 

  • Pyka, G. et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv. Eng. Mater. 14, 363–370 (2012).

    Article 
    CAS 

    Google Scholar 

  • Yang, L. et al. Compression–compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater. 181, 49–66 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tyagi, S. A. & Manjaiah, M. Fine porous stainless steel TPMS cellular structures: printability and post-processing evaluation. J. Inst. Eng. India Ser. D (2023).

  • Soro, N., Saintier, N., Attar, H. & Dargusch, M. S. Surface and morphological modification of selectively laser melted titanium lattices using a chemical post treatment. Surf. Coat. Technol. 393, 125794 (2020).

    Article 
    CAS 

    Google Scholar 

  • Was, G. S. & Pelloux, R. M. The effect of shot peening on the fatigue behavior of alloy 7075-T6. Metall. Trans. A 10, 656–658 (1979).

    Article 

    Google Scholar 

  • Soyama, H. Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening, water jet peening, shot peening and laser peening. J. Mater. Process. Technol. 269, 65–78 (2019).

    Article 
    CAS 

    Google Scholar 

  • Prevéy, P. S. & Cammett, J. T. The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. Int. J. Fatigue 26, 975–982 (2004).

    Article 

    Google Scholar 

  • Callens, S. J. P., Arns, C. H., Kuliesh, A. & Zadpoor, A. A. Decoupling minimal surface metamaterial properties through multi-material hyperbolic tilings. Adv. Funct. Mater. 31, 2101373 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ashby, M. F. The properties of foams and lattices. Phil. Trans. R. Soc. A. 364, 15–30 (2006).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, L. et al. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. J. Mech. Behav. Biomed. 109, 103843 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ravichander, B. B., Jagdale, S. H., Jabed, A. & Kumar, G. Mechanical and corrosion behavior of sheet-based 316L TPMS structures. Int. J. Mech. Sci. 254, 108439 (2023).

    Article 

    Google Scholar 

  • Speirs, M., Van Hooreweder, B., Van Humbeeck, J. & Kruth, J.-P. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. J. Mech. Behav. Biomed. 70, 53–59 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kaur, I. & Singh, P. Flow and thermal transport characteristics of triply-periodic minimal surface (TPMS)-based gyroid and Schwarz-P cellular materials. Numer. Heat Transf. A 79, 553–569 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, C. et al. Research on comprehensive heat dissipation characteristics of AlSi7Mg TPMS heat sinks manufactured by laser powder bed fusion. Appl. Therm. Eng. 261, 124941 (2025).

    Article 
    CAS 

    Google Scholar 

  • Qureshi, Z. A., Elnajjar, E., Al-Ketan, O., Al-Rub, R. A. & Al-Omari, S. B. Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS). Int. J. Heat Mass. Tranf. 170, 121001 (2021).

    Article 

    Google Scholar 

  • Al-Ketan, O. et al. Forced convection computational fluid dynamics analysis of architected and three-dimensional printable heat sinks based on triply periodic minimal surfaces. J. Therm. Sci. Eng. Appl. 13, 021010 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ma, S. et al. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. J. Mech. Behav. Biomed. 93, 158–169 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yu, G. et al. The select of internal architecture for porous Ti alloy scaffold: a compromise between mechanical properties and permeability. Mater. Design 192, 108754 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, Z., Chen, Z., Chen, X. & Zhao, R. Effect of unit configurations and parameters on the properties of Ti–6Al–4V unit-stacked scaffolds: a trade-off between mechanical and permeable performance. J. Mech. Behav. Biomed. Mater. 116, 104332 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Asbai-Ghoudan, R., Ruiz De Galarreta, S. & Rodriguez-Florez, N. Analytical model for the prediction of permeability of triply periodic minimal surfaces. J. Mech. Behav. Biomed. 124, 104804 (2021).

    Article 

    Google Scholar 

  • Ali, D. & Sen, S. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures. J. Mech. Behav. Biomed. 75, 262–270 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ali, D., Ozalp, M., Blanquer, S. B. G. & Onel, S. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. Eur. J. Mech. B/Fluids 79, 376–385 (2020).

    Article 

    Google Scholar 

  • Luo, J.-W. et al. Macroscopic transport properties of Gyroid structures based on pore-scale studies: permeability, diffusivity and thermal conductivity. Int. J. Heat Mass Tranf. 146, 118837 (2020).

    Article 

    Google Scholar 

  • Pires, T. et al. Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds. J. Biomech. 117, 110263 (2021).

    Article 
    PubMed 

    Google Scholar 

  • De Oliveira, A. R., De Andrade Mendes Filho, A., Masoumi, M. & Del Conte, E. G. Compression and energy absorption of maraging steel primitive scaffolds produced by powder bed fusion. Int. J. Adv. Manuf. Technol. 116, 1271–1283 (2021).

    Article 

    Google Scholar 

  • Yin, H., Zheng, X., Wen, G., Zhang, C. & Wu, Z. Design optimization of a novel bio-inspired 3D porous structure for crashworthiness. Compos. Struct. 255, 112897 (2021).

    Article 
    CAS 

    Google Scholar 

  • Alkebsi, E. A. A., Ameddah, H., Outtas, T. & Almutawakel, A. Design of graded lattice structures in turbine blades using topology optimization. Int. J. Comput. Integ. Manuf.34, 370–384 (2021).

    Article 

    Google Scholar 

  • Wang, Z., Zhang, Y., Li, G., Jin, G. & Bernard, A. Stiffness modulation for soft robot joint via lattice structure configuration design. Procedia CIRP 100, 732–737 (2021).

    Article 

    Google Scholar 

  • Attarzadeh, R., Rovira, M. & Duwig, C. Design analysis of the “Schwartz D” based heat exchanger: A numerical study. Int. J. Heat Mass Tranf. 177, 121415 (2021).

    Article 

    Google Scholar 

  • Li, W., Yu, G. & Yu, Z. Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles. Appl. Therm. Eng. 179, 115686 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, L. et al. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J. Orthop. Transl. 19, 94–105 (2019).

    Google Scholar 

  • Hsieh, M.-T., Begley, M. R. & Valdevit, L. Architected implant designs for long bones: advantages of minimal surface-based topologies. Mater. Design 207, 109838 (2021).

    Article 

    Google Scholar 

  • Charbonnier, B. et al. Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites. Acta Biomater. 109, 254–266 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alabort, E., Barba, D. & Reed, R. C. Design of metallic bone by additive manufacturing. Scripta Mater. 164, 110–114 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lei, H.-Y. et al. Feasibility of preparing additive manufactured porous stainless steel felts with mathematical micro pore structure as novel catalyst support for hydrogen production via methanol steam reforming. Int. J. Hydrog. Energy 44, 24782–24791 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Baena-Moreno, F. M. et al. Stepping toward efficient microreactors for CO 2 methanation: 3D-printed Gyroid geometry. Acs Sustain, Chem, Eng, 9, 8198–8206 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sun, P. et al. 3D Interconnected Gyroid Au–CuS materials for efficient solar steam generation. ACS Appl. Mater. Interfaces 12, 34837–34847 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ataee, A., Li, Y., Brandt, M. & Wen, C. Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Mater. 158, 354–368 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yan, C., Hao, L., Hussein, A. & Raymont, D. Evaluations of cellular lattice structures manufactured using selective laser melting. Int.J. Mach. Tools Manuf. 62, 32–38 (2012).

  • Soro, N., Attar, H., Wu, X. & Dargusch, M. S. Investigation of the structure and mechanical properties of additively manufactured Ti-6Al-4V biomedical scaffolds designed with a Schwartz primitive unit-cell. Mater. Sci. Eng. A 745, 195–202 (2019).

    Article 
    CAS 

    Google Scholar 

  • Soro, N. et al. Evaluation of the mechanical compatibility of additively manufactured porous Ti–25Ta alloy for load-bearing implant applications. J. Mech. Behav. Biomed. 97, 149–158 (2019).

    Article 
    CAS 

    Google Scholar 

  • Carluccio, D. et al. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomater. 103, 346–360 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kadkhodapour, J. et al. Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J. Mech. Behav. Biomed. 50, 180–191 (2015).

    Article 
    CAS 

    Google Scholar 

  • Yánez, A., Fiorucci, M. P., Cuadrado, A., Martel, O. & Monopoli, D. Surface roughness effects on the fatigue behaviour of gyroid cellular structures obtained by additive manufacturing. Int. J. Fatigue 138, 105702 (2020).

    Article 

    Google Scholar 

  • Kelly, C. N. et al. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Acta Biomater. 94, 610–626 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bobbert, F. S. L. et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 53, 572–584 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hrabe, N. W., Heinl, P., Flinn, B., Körner, C. & Bordia, R. K. Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V). J. Biomed. Mater. Res. B 99B, 313–320 (2011).

    Article 
    CAS 

    Google Scholar 

  • Amin Yavari, S. et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J. Mech. Behav. Biomed. Mater. 43, 91–100 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahmadi, S. M. et al. Fatigue performance of additively manufactured meta-biomaterials: The effects of topology and material type. Acta Biomater. 65, 292–304 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahmadi, S. M. et al. From microstructural design to surface engineering: A tailored approach for improving fatigue life of additively manufactured meta-biomaterials. Acta Biomater. 83, 153–166 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, Y. et al. Compressive properties and fatigue performance of NiTi lattice structures optimized by TPMS. MSAM 3, 3380 (2024).

    Article 
    CAS 

    Google Scholar 

  • Kotzem, D. et al. Ti6Al4V lattice structures manufactured by electron beam powder bed fusion – microstructural and mechanical characterization based on advanced in situ techniques. J. Mater. Res. Technol. 22, 2111–2130 (2023).

    Article 
    CAS 

    Google Scholar 

  • Gandhi, R., Salmi, M., Roy, B., Paglari, L. & Concli, F. Mechanical performance, fatigue behaviour, and biointegration of additively manufactured architected lattices. Virtual Phys. Prototyp. 20, e2530733 (2025).

    Article 

    Google Scholar 

  • Lefebvre, L. P., Baril, E. & Bureau, M. N. Effect of the oxygen content in solution on the static and cyclic deformation of titanium foams. J. Mater Sci. Mater. Med. 20, 2223–2233 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.