November 15, 2025

Rapid Multi

Transforming Spaces, Enriching Lives

A smart framework to design membranes for organic micropollutants removal

A smart framework to design membranes for organic micropollutants removal
  • Christou, A. et al. Sustainable wastewater reuse for agriculture. Nat. Rev. Earth Environ. 5, 504–521 (2024).

    CAS 

    Google Scholar 

  • Alsbaiee, A. et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529, 190–194 (2016).

    CAS 

    Google Scholar 

  • Guidelines for Drinking-Water Quality 4th edn (WHO, 2022); https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/water-safety-and-quality/drinking-water-quality-guidelines

  • Shannon, M. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS 

    Google Scholar 

  • Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Google Scholar 

  • Huang, J. et al. Polymeric membranes with highly homogenized nanopores for ultrafast water purification. Nat. Sustain. 7, 901–909 (2024).

    Google Scholar 

  • Lu, D. et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane. Adv. Membr. 2, 100032 (2022).

    Google Scholar 

  • Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometer pores for sub-1 Å precision separation. Nat. Commun. 11, 2015 (2020).

    CAS 

    Google Scholar 

  • Tan, Z. et al. Polyamide membranes with nanoscale Turing structures for water purification. Science 360, 518–521 (2018).

    CAS 

    Google Scholar 

  • Giorno, L. Membranes that filter and destroy pollutants. Nat. Nanotechnol. 17, 334–335 (2022).

    CAS 

    Google Scholar 

  • Liu, Y. L. et al. Exploring the interactions of organic micropollutants with polyamide nanofiltration membranes: a molecular docking study. J. Membr. Sci. 577, 285–293 (2019).

    CAS 

    Google Scholar 

  • Guo, H. et al. Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? Environ. Sci. Technol. Lett. 3, 332–338 (2016).

    CAS 

    Google Scholar 

  • Zha, Z. et al. Interlayer-modulated polyamide composite membrane for organic solvent nanofiltration. J. Membr. Sci. 647, 120306 (2022).

    CAS 

    Google Scholar 

  • Wang, P. et al. Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. Water Res. 175, 115649 (2020).

    CAS 

    Google Scholar 

  • Khoo, Y. S. et al. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: a review. Chemosphere 305, 135151 (2022).

    CAS 

    Google Scholar 

  • Ratchnashree, S. R. et al. Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water—a review. Sci. Total Environ. 904, 166563 (2023).

    CAS 

    Google Scholar 

  • Lin, Y. L. et al. Improving the organic and biological fouling resistance and removal of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization. Sci. Total Environ. 635, 543–550 (2018).

    CAS 

    Google Scholar 

  • Ma, X. et al. Revealing key structural and operating features on water/salts selectivity of polyamide nanofiltration membranes by ensemble machine learning. Desalination 548, 116293 (2023).

    CAS 

    Google Scholar 

  • Ritt, C. L. et al. Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Sci. Adv. 8, eabl5771 (2022).

    CAS 

    Google Scholar 

  • Priya, P. et al. Machine learning assisted screening of two-dimensional materials for water desalination. ACS Nano 16, 1929–1939 (2022).

    CAS 

    Google Scholar 

  • Zhu, T. Y. et al. Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models. Sci. Total Environ. 857, 159348 (2023).

    CAS 

    Google Scholar 

  • Jeong, N. et al. Exploring the knowledge attained by machine learning on ion transport across polyamide membranes using explainable artificial intelligence. Environ. Sci. Technol. 57, 17851–17862 (2023).

    CAS 

    Google Scholar 

  • Tayara, A. et al. Machine learning models for predicting the rejection of organic pollutants by forward osmosis and reverse osmosis membranes and unveiling the rejection mechanisms. Water Res. 266, 122363 (2024).

    CAS 

    Google Scholar 

  • Hu, A. et al. A machine learning based framework to tailor properties of nanofiltration and reverse osmosis membranes for targeted removal of organic micropollutants. Water Res. 268, 122677 (2025).

    CAS 

    Google Scholar 

  • Jeong, N. et al. Elucidating governing factors of PFAS removal by polyamide membranes using machine learning and molecular simulations. Nat. Commun. 15, 10918 (2024).

    CAS 

    Google Scholar 

  • Wang, H. J. et al. Understanding rejection mechanisms of trace organic contaminants by polyamide membranes via data-knowledge codriven machine learning. Environ. Sci. Technol. 58, 5878–5888 (2024).

    CAS 

    Google Scholar 

  • Wang, M. et al. Accelerating discovery of high fractional free volume polymers from a data-driven approach. ACS Appl. Mater. Interfaces 14, 31203–31215 (2022).

    CAS 

    Google Scholar 

  • Mahlangu, T. O. et al. Role of permeate flux and specific membrane-foulant-solute affinity interactions (∆Gslm) in transport of trace organic solutes through fouled nanofiltration (NF) membranes. J. Membr. Sci. 518, 203–215 (2016).

    CAS 

    Google Scholar 

  • Wang, R. et al. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. J. Membr. Sci. 620, 118809 (2021).

    CAS 

    Google Scholar 

  • Jeong, N. et al. Predicting micropollutant removal by reverse osmosis and nanofiltration membranes: is machine learning viable? Environ. Sci. Technol. 55, 11348–11359 (2021).

    CAS 

    Google Scholar 

  • Liu, Y. L. et al. Boosting the performance of nanofiltration membranes in removing organic micropollutants: trade-off effect, strategy evaluation, and prospective development. Environ. Sci. Technol. 56, 15220–15237 (2022).

    CAS 

    Google Scholar 

  • Breitner, L. N. et al. Effect of functional chemistry on the rejection of low-molecular weight neutral organics through reverse osmosis membranes for potable reuse. Environ. Sci. Technol. 53, 11401–11409 (2019).

    CAS 

    Google Scholar 

  • Dan, L. et al. Ensemble machine learning reveals key structural and operational features governing ion selectivity of polyamide nanofiltration membranes. Desalination 564, 116748 (2023).

    Google Scholar 

  • Lesovoy, D. M. et al. NMR relaxation parameters of methyl groups as a tool to map the interfaces of helix–helix interactions in membrane proteins. J. Biomol. NMR 69, 165–179 (2017).

    CAS 

    Google Scholar 

  • Heiranian, M. et al. Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments. Chem. Soc. Rev. 52, 8455–8480 (2023).

    CAS 

    Google Scholar 

  • Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 9, eadf8488 (2023).

    CAS 

    Google Scholar 

  • Wang, F. F. et al. Experiments and machine learning-based modeling for haloacetic acids rejection by nanofiltration: influence of solute properties and operating conditions. Sci. Total Environ. 883, 163610 (2023).

    CAS 

    Google Scholar 

  • Lin, S. S. et al. A zwitterion-like, charge-balanced ultrathin layers on polymeric membranes for antifouling property. Environ. Sci. Technol. 52, 4457–4463 (2018).

    CAS 

    Google Scholar 

  • Niu, C. et al. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: a critical review. Water Res. 216, 118299 (2022).

    CAS 

    Google Scholar 

  • Liang, L. et al. Machine learning in membrane science: bridging materials, structures, and performance for next-generation membrane design. Sep. Purif. Technol. 369, 133091 (2025).

    CAS 

    Google Scholar 

  • Gao, H. et al. Revolutionizing membrane design using machine learning Bayesian optimization. Environ. Sci. Technol. 56, 2572–2581 (2022).

    CAS 

    Google Scholar 

  • Cao, Z. et al. Machine learning in membrane design: from property prediction to AI-guided optimization. Nano Lett. 24, 2953–2960 (2024).

    CAS 

    Google Scholar 

  • Donnan, F. G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. J. Membr. Sci. 100, 45–55 (1995).

    CAS 

    Google Scholar 

  • Van Oss, C. J. Acid—base interfacial interactions in aqueous media. Colloids Surf. A 78, 1–49 (1993).

    Google Scholar 

  • Kima, S. et al. Interactions controlling biopolymer fouling of reverse osmosis membranes. Desalination 202, 333–342 (2007).

    Google Scholar 

  • Subramani, A. et al. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes. J. Membr. Sci. 319, 111–125 (2008).

    CAS 

    Google Scholar 

  • Guo, J. et al. Temperature dependency of the apolar surface tension component for water and its role in classifying apolar and polar interfacial interactions. J. Phys. Chem. C 127, 18167–18175 (2023).

    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.