November 16, 2025

Rapid Multi

Transforming Spaces, Enriching Lives

Prediction of buckling damage of steel equal angle structural members using hybrid machine learning techniques

Prediction of buckling damage of steel equal angle structural members using hybrid machine learning techniques
  • Wang, W., Kodur, V., Yang, X. & Li, G. Experimental study on local buckling of axially compressed steel stub columns at elevated temperatures. Thin-Walled Struct. 82, 33–45 (2014).

    Article 
    MATH 

    Google Scholar 

  • Giamundo, V., Lignola, G. P., Prota, A. & Manfredi, G. Analytical evaluation of FRP wrapping effectiveness in restraining reinforcement bar buckling. J. Struct. Eng. 140, (2014).

  • Megahed, K., Mahmoud, N. S. & Abd-Rabou, S. E. M. Application of machine learning models in the capacity prediction of RCFST columns. Sci. Rep. 13, 20878 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Wu, F., Tang, F., Lu, R. & Cheng, M. Predicting compressive strength of RCFST columns under different loading scenarios using machine learning optimization. Sci. Rep. 13, 16571 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kollar, L. Structural Stability in Engineering Practice CRC. (1999).

  • Beer, F. P. & Johnston, E. R. Mechanics of Materials McGraw-Hill. (1992).

  • Kim, D. K. et al. Strength and residual stress evaluation of stub columns fabricated from 800 MPa high-strength steel. J. Constr. Steel Res. 102, 111–120 (2014).

    Article 
    MATH 

    Google Scholar 

  • Shi, G., Zhou, W. J., Bai, Y. & Lin, C. C. Local buckling of 460 MPa high strength steel welded section stub columns under axial compression. J. Constr. Steel Res. 100, 60–70 (2014).

    Article 
    MATH 

    Google Scholar 

  • Liu, Y. & Liang, Y. Satin Bowerbird optimizer-neural network for approximating the capacity of CFST columns under compression. Sci. Rep. 14, 8342 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Saetiew, W. & Chucheepsakul, S. Post-buckling of linearly tapered column made of nonlinear elastic materials obeying the generalized Ludwick constitutive law. Int. J. Mech. Sci. 65, 83–96 (2012).

    Article 
    MATH 

    Google Scholar 

  • Crisfield, M. A. A faster modified newton-raphson iteration. Comput. Methods Appl. Mech. Eng. 20, 267–278 (1979).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Chang, T. Y. & Sawamiphakdi, K. Large deflection and post-buckling analysis of shell structures. Comput. Methods Appl. Mech. Eng. 32, 311–326 (1982).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Stoykov, S. Buckling analysis of geometrically nonlinear curved beams. J. Comput. Appl. Math. 340, 653–663 (2018).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Baydoun, I., Savin, É., Cottereau, R., Clouteau, D. & Guilleminot, J. Kinetic modeling of multiple scattering of elastic waves in heterogeneous anisotropic media. Wave Motion. 51, 1325–1348 (2014).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Jiang, D., Bechle, N. J., Landis, C. M. & Kyriakides, S. Buckling and recovery of NiTi tubes under axial compression. Int. J. Solids Struct. 80, 52–63 (2016).

    Article 
    CAS 

    Google Scholar 

  • Valeš, J. & Kala, Z. Mesh convergence study of solid FE model for buckling analysis. AIP Conf. Proc. 150005. (1978).

  • Stoffel, M., Bamer, F. & Markert, B. Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled Struct. 131, 102–106 (2018).

    Article 
    MATH 

    Google Scholar 

  • Nguyen, P., Doškář, M., Pakravan, A. & Krysl, P. Modification of the quadratic 10-node tetrahedron for thin structures and stiff materials under large-strain hyperelastic deformation. Int. J. Numer. Methods Eng. 114, 619–636 (2018).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Peña, J. M., LaTorre, A. & Jérusalem, A. SoftFEM: the Soft Finite element Method. Int. J. Numer. Methods Eng. 118, 606–630 (2019).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Karalis, D. G. Increasing the efficiency of computational welding mechanics by combining solid and shell elements. Mater. Today Commun. 22, 100836 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Sebaaly, H., Varma, S. & Maina, J. W. Optimizing asphalt mix design process using artificial neural network and genetic algorithm. Constr. Build. Mater. 168, 660–670 (2018).

    Article 

    Google Scholar 

  • Ye, F. et al. Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption. Int. J. Hydrog. Energy. 44, 5334–5344 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Sadowski, Ł., Piechówka-Mielnik, M., Widziszowski, T., Gardynik, A. & Mackiewicz, S. Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust. J. Clean. Prod. 212, 727–740 (2019).

    Article 

    Google Scholar 

  • Asteris, P. G. & Kolovos, K. G. Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 31, 409–424 (2019).

    Article 

    Google Scholar 

  • Tran, V. L., Thai, D. K. & Kim, S. E. Application of ANN in predicting ACC of SCFST column. Compos. Struct. 228, 111332 (2019).

    Article 
    MATH 

    Google Scholar 

  • Fahmy, A. S. & El-Madawy, M. E. T. Atef Gobran, Y. using artificial neural networks in the design of orthotropic bridge decks. Alex. Eng. J. 55, 3195–3203 (2016).

    Article 
    MATH 

    Google Scholar 

  • Le, B. A., Yvonnet, J. & He, Q. C. Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Methods Eng. 104, 1061–1084 (2015).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Kaveh, A., Eskandari, A. & Movasat, M. Buckling resistance prediction of high-strength steel columns using Metaheuristic-trained Artificial neural networks. Structures 56, 104853 (2023).

    Article 
    MATH 

    Google Scholar 

  • Mojtabaei, S. M., Becque, J., Hajirasouliha, I. & Khandan, R. Predicting the buckling behaviour of thin-walled structural elements using machine learning methods. Thin-Walled Struct. 184, 110518 (2023).

    Article 

    Google Scholar 

  • Hou, Z., Hu, S. & Wang, W. Interpretable machine learning models for predicting probabilistic axial buckling strength of steel circular hollow section members considering discreteness of geometries and material. Adv. Struct. Eng. (2024).

  • Ban, H. Y., Shi, G., Shi, Y. J. & Wang, Y. Q. Column buckling tests of 420 mpa high strength steel single equal angles. Int. J. Str. Stab. Dyn. 13, 1250069 (2013).

    Article 
    MATH 

    Google Scholar 

  • Ma, T. Y., Liu, X., Hu, Y. F., Chung, K. F. & Li, G. Q. Structural behaviour of slender columns of high strength S690 steel welded H-sections under compression. Eng. Struct. 157, 75–85 (2018).

    Article 
    MATH 

    Google Scholar 

  • Huiyong, B. & Gang, S. Wang Yuanqing. Residual stress tests of high-strength steel equal angles. J. Struct. Eng. 138, 1446–1454 (2012).

    Article 
    MATH 

    Google Scholar 

  • Narayanakumar, S. & Raja, K. A BP Artificial neural network model for Earthquake Magnitude Prediction in Himalayas, India. Circuits Syst. 7, 3456–3468 (2016).

    Article 
    MATH 

    Google Scholar 

  • Zweiri, Y. H., Whidborne, J. F. & Sceviratne, L. D. A three-term Backpropagation Algorithm. Neurocomputing 50, 305–318 (2002).

    Article 
    MATH 

    Google Scholar 

  • Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Shi, Y. & Eberhart, R. A modified particle swarm optimizer. in IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360) 69–73. (1998).

  • Chai, T. & Draxler, R. R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247–1250 (2014).

    Article 
    ADS 

    Google Scholar 

  • Willmott, C. J. & Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Sarir, P., Chen, J., Asteris, P. G., Armaghani, D. J. & Tahir, M. M. Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng. Comput. (2019).

    Article 

    Google Scholar 

  • Sheela, K. G. & Deepa, S. N. Review on methods to fix number of hidden neurons in neural networks. Math. Probl. Eng. (2013).

    Article 
    MATH 

    Google Scholar 

  • Ren, Q., Li, M., Zhang, M., Shen, Y. & Si, W. Prediction of Ultimate Axial Capacity of Square Concrete-Filled Steel Tubular Short Columns using a Hybrid Intelligent Algorithm. Appl. Sci. 9, 2802 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Gordan, B., Jahed Armaghani, D., Hajihassani, M. & Monjezi, M. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng. Comput. 32, 85–97 (2016).

    Article 

    Google Scholar 

  • Kuri-Morales, A. Closed determination of the number of neurons in the hidden layer of a multi-layered perceptron network. Soft Comput. 21, 597–609 (2017).

    Article 
    MATH 

    Google Scholar 

  • Abambres, M., Rajana, K., Tsavdaridis, K. D. & Ribeiro, T. P. Neural network-based formula for the buckling load prediction of I-Section Cellular Steel beams. Computers 8, 2 (2019).

    Article 

    Google Scholar 

  • Javed, H. et al. On the efficacy of ensemble of Constraint Handling techniques in Self-Adaptive Differential Evolution. Mathematics 7, 635 (2019).

    Article 
    MATH 

    Google Scholar 

  • Piotrowski, A. P. Review of Differential Evolution population size. Swarm Evol. Comput. 32, 1–24 (2017).

    Article 
    MATH 

    Google Scholar 

  • Chen, T., Tang, K., Chen, G. & Yao, X. A Large Population Size Can Be Unhelpful in Evolutionary Algorithms. arXiv (2012).

  • Momeni, E., Jahed Armaghani, D., Hajihassani, M. & Mohd Amin, M. F. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60, 50–63 (2015).

    Article 
    ADS 

    Google Scholar 

  • Zhao, Q. & Hastie, T. Causal interpretations of Black-Box models. J. Bus. Econ. Stat., 1–10 (2019).

    MATH 

    Google Scholar 

  • Qi, C. et al. Towards Intelligent Mining for Backfill: a genetic programming-based method for strength forecasting of cemented paste backfill. Miner. Eng. 133, 69–79 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Goldstein, A., Kapelner, A., Bleich, J. & Pitkin, E. Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation. J. Comput. Graph. Stat. 24, 44–65 (2015).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Nguyen, V. H. et al. Optimization of milling conditions for AISI 4140 steel using an integrated machine learning-multi objective optimization-multi criteria decision making framework. Measurement 242, 115837 (2025).

    Article 
    MATH 

    Google Scholar 

  • Sun, Y., Zhang, L., Yao, M. & Zhang, J. Neural network models and shapley additive explanations for a beam-ring structure. Chaos Solitons Fractals. 185, 115114 (2024).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.