November 16, 2025

Rapid Multi

Transforming Spaces, Enriching Lives

The convergent design evolution of multiscale biomineralized structures in extinct and extant organisms

The convergent design evolution of multiscale biomineralized structures in extinct and extant organisms
  • Wainwright, S. A. Mechanical design in organisms (Princeton University Press, 1982).

  • Wegst, U. G. & Ashby, M. F. The mechanical efficiency of natural materials. Philos. Mag. 84, 2167–2186 (2004).

    Article 
    CAS 

    Google Scholar 

  • Vogel, S. Comparative biomechanics: life’s physical world (Princeton University Press, 2013).

  • Hamm, C. Evolution of Lightweight Structures: Analyses and Technical Applications. (Springer, Berlin/Heidelberg, Germany, 2015).

  • Lowenstam, H. A. Minerals formed by organisms. Science 211, 1126–1131 (1981).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Addadi, L. & Weiner, S. Biomineralization: mineral formation by organisms. Phys. Scr. 89, 098003 (2014).

    Article 
    CAS 

    Google Scholar 

  • Clites, E. C., Droser, M. L. & Gehling, J. G. The advent of hard-part structural support among the ediacara biota: Ediacaran harbinger of a Cambrian mode of body construction. Geology 40, 307–310 (2012).

    Article 

    Google Scholar 

  • Cohen, P. A., Schopf, J. W., Butterfield, N. J., Kudryavtsev, A. B. & Macdonald, F. A. Phosphate Biomineralization in Mid-Neoproterozoic Protists. Geology 39, 539–542 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gilbert, P. U. P. A. et al. Biomineralization: integrating mechanism and evolutionary history. Sci. Adv. 8, 9653 (2022).

    Article 

    Google Scholar 

  • Bels, V. L., Russell, A. P. Convergent Evolution (Springer, 2023).

  • Hildebrand, M., Goslow, G. E. Analysis of vertebrate structure. In Analysis of vertebrate structure pp 125–155 (Wiley, 2001).

  • Huang, W. et al. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, 1901561 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yaraghi, N. A. & Kisailus, D. Biomimetic structural materials: inspiration from design and assembly. Annu. Rev. Phys. Chem. 69, 23–57 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Barthelat, F. Architectured materials in engineering and biology: fabrication, structure, mechanics and performance. Int. Mater. Rev. 60, 413–430 (2015).

    Article 
    CAS 

    Google Scholar 

  • Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. & Pahl, A. K. Biomimetics: its practice and theory. J. R. Soc. Interface 3, 471–482 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhushan, B. Biomimetics: lessons from nature–an overview. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 367, 1445–1486 (2009).

    CAS 

    Google Scholar 

  • Seilacher, A. Gishlick A. D. Morphodynamics (CRC Press, 2014).

  • Perricone, V., Santulli, C., Rendina, F. & Langella, C. Organismal design and biomimetics: a problem of scale. Biomimetics 6, 56 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naleway, S. E., Porter, M. M., McKittrick, J. & Meyers, M. A. Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27, 5455–5476 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jablonski, D. Extinction: past and present. Nature 427, 589 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Perricone, V., Grun, T., Raia, P. & Langella, C. Paleomimetics: a conceptual framework for a biomimetic design inspired by fossils and evolutionary processes. Biomimetics 7, 89 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashby, M. F., Medalist, R. M. The mechanical properties of cellular solids. (1983).

  • Gibson, L. J. Cellular solids. MRS Bull. 28, 270–274 (2003).

    Article 

    Google Scholar 

  • Gibson, L. J. Biomechanics of cellular solids. J. Biomech. 38, 377–399 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Meyers, M. A., Chen, P. Y., Lin, A. Y. M. & Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    Article 
    CAS 

    Google Scholar 

  • Meyers, M. A., McKittrick, J. & Chen, P.-Y. Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Porter, S. The rise of predators. Geology 39, 607–608 (2011).

    Article 

    Google Scholar 

  • Pearce, P. Structure in nature is a strategy for design (MIT Press, 1990).

  • Perricone, V. et al. Hexagonal Voronoi pattern detected in the microstructural design of the echinoid skeleton. J. R. Soc. Interface 19, 20220226 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weaver, J. C. et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge. Euplectella Aspergillum. J. Struct. Biol. 158, 93–106 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article 
    CAS 

    Google Scholar 

  • Nickel, M., Bullinger, E. & Beckmann, F. Functional morphology of Tethya species (Porifera): 2. three-dimensional morphometrics on spicules and skeleton superstructures of T. Minuta. Zoomorphology 125, 225–239 (2006).

    Article 

    Google Scholar 

  • Woźnica, A., Karczewski, J., Bernaś, T., Świątek, P., Drab, M., Surma, R., Babczyńska, A. The spatial structure (3D) and mechanical properties of the sponge Spongilla Lacustris L. (Porifera: Spongillida) skeleton as a potential tensegral architecture. Eur. Zool. J. 89, 1002–1017 (2022).

  • Marin, F., Bundeleva, I., Takeuchi, T., Immel, F. & Medakovic, D. Organic matrices in metazoan calcium carbonate skeletons: composition, functions, evolution. J. Struct. Biol. 196, 98–106 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lowenstam, H. A. & Weiner, S. On biomineralization (Oxford Univ. Press, 1989).

  • Fleck, N. A., Deshpande, V. S. & Ashby, M. F. Micro-architectured materials: past, present and future. Proc. R. Soc. Math. Phys. Eng. Sci. 466, 2495–2516 (2010).

    CAS 

    Google Scholar 

  • Von Meyer, G. Die Architektur. der Spongiosa. Archs Anat. Physiol. Wiss. Med 34, 615–628 (1867).

  • Wolff, J. Ueber die innere Architectur der Knochen und ihre Bedeutung für die Frage vom Knochenwachsthum. Clin. Orthop. Relat. Res. 468, 1056–1065 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Padian, K., Lamm, E. T. Why study the bone microstructure of fossil tetrapods. bone histology of fossil tetrapods: advancing methods, analysis, and interpretation (University of California Press, 2013).

  • Swartz, S. M., Bennett, M. B., Carrier, D. R. Wing bone stresses in free flying bats and the evolution of skeletal design for flight. Nature (1992).

  • de Margerie, E. Laminar bone as an adaptation to torsional loads in flapping flight. Anat. Rec. 201, 521–526 (2002).

    Article 

    Google Scholar 

  • Williams, C. J. et al. Helically arranged cross struts in azhdarchid pterosaur cervical vertebrae and their biomechanical implications. Science 24. (2021).

  • Du Plessis, A., Broeckhoven, C., Yadroitsev, I., Yadroitsava, I. & Roux, S. G. Analyzing nature’s protective design: the glyptodont body armor. J. Mech. Behav. Biomed. Mater. 82, 218–223 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Su, F. Y. et al. Spines of the porcupine fish: structure, composition, and mechanical properties. J. Mech. Behav. Biomed. Mater. 73, 38–49 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Schmidt, F. N. et al. On the origins of fracture toughness in advanced teleosts: how the swordfish sword’s bone structure and composition allow for slashing under water to kill or stun prey. Adv. Sci. 6, 1900287 (2019).

    Article 

    Google Scholar 

  • Toader, N., Sobek, W. & Nickel, K. G. Energy absorption in functionally graded concrete bioinspired by sea urchin spines. J. Bionic Eng. 14, 369–378 (2017).

    Article 

    Google Scholar 

  • Li, Y. et al. Porous morphology and graded materials endow hedgehog spines with impact resistance and structural stability. Acta Biomater. 147, 91–101 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Torelli, G., Fernández, M. G. & Lees, J. M. Functionally graded concrete: design objectives, production techniques, and analysis methods for layered and continuously graded elements. Constr. Build. Mater. 242, 118040 (2020).

    Article 

    Google Scholar 

  • Ahamed, M. K., Wang, H. & Hazell, P. J. From biology to biomimicry: using nature to build better structures–a review. Constr. Build. Mater. 320, 126195 (2022).

    Article 

    Google Scholar 

  • Perricone, V. et al. Echinoid skeleton: an insight on the species-specific pattern of the Paracentrotus lividus plate and its microstructural variability. J. R. Soc. Interface 20, 20220673 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Presser, V., Schultheiß, S., Berthold, C. & Nickel, K. G. Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behaviour. Part I. Mechanical behaviour of sea urchin spines under compression. J. Bionic Eng. 6, 203–213 (2009).

    Article 

    Google Scholar 

  • Grossmann, J. N. & Nebelsick, J. H. Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines. Zoomorph 132, 301–315 (2013).

    Article 

    Google Scholar 

  • Koehl, M. A. R. Mechanical design of spicule-reinforced connective tissue: stiffness. J. Exp. Biol. 98, 239–267 (1982).

    Article 

    Google Scholar 

  • Hu, Z. et al. Design of ultra-lightweight and high-strength cellular structural composites inspired by biomimetics. Compos. B Eng. 121, 108–121 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ramakrishna, D. & Bala Murali, G. Bio-inspired 3d-printed lattice structures for energy absorption applications: a review. Proc. Inst. Mech. Eng. J Mater. Des. Appl. 237, 503–542 (2023).

    Google Scholar 

  • Jang, J. H. et al. 3D polymer microframes that exploit length‐scale‐dependent mechanical behavior. Adv. Mater. 18, 2123–2127 (2006).

    Article 
    CAS 

    Google Scholar 

  • Zhao, N. et al. Bioinspired materials: from low to high dimensional structure. Adv. Mater. 26, 6994–7017 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, H. K., Wu, W. J., Kang, Z. & Feng, X. Q. Topology optimization method for the design of bioinspired self-similar hierarchical microstructures. Comput. Methods Appl. Mech. Eng. 372, 113399 (2020).

    Article 

    Google Scholar 

  • Naboni, R. & Kunic, A. Bone-Inspired 3D printed structures for construction applications. Gest. Tecnol. Proj. 14, 111–124 (2019).

    Article 

    Google Scholar 

  • Weaver, J. C. et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 158, 93–106 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fernandes, M. C., Aizenberg, J., Weaver, J. C. & Bertoldi, K. Mechanically robust lattices inspired by deep-sea glass sponges. Nat. Mater. 20, 237–241 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Montroni, D. et al. Direct ink write printing of chitin-based gel fibers with customizable fibril alignment, porosity, and mechanical properties for biomedical applications. J. Funct. Biomater. 13, 83 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Duro-Royo, J., Zak, J., Tai, Y. J., Ling, A. S., Oxman, N. Parametric chemistry reverse engineering biomaterial composites for additive manufacturing of bio-cement structures across scales. In Challenges for Technology Innovation: An Agenda for the Future 217–223 (CRC Press, 2017).

  • Li, Y., Ortiz, C. & Boyce, M. C. Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints. Phys. Rev. E 85, 031901 (2012).

    Article 

    Google Scholar 

  • Krauss, S., Monsonego‐Ornan, E., Zelzer, E., Fratzl, P. & Shahar, R. Mechanical function of a complex three‐dimensional suture joining the bony elements in the shell of the red‐eared slider turtle. Adv. Mater. 21, 407–412 (2009).

    Article 
    CAS 

    Google Scholar 

  • Hewitt, R. A., Westermann & Gerd, E. G. Mechanical significance of ammonoid septa with complex sutures. Lethaia 30, 205–212 (1997).

    Article 

    Google Scholar 

  • Jaslow, C. R. & Biewener, A. A. Strain patterns in the horncores, cranial bones and sutures of goats (Capra Hircus) during impact loading. J. Zool. 235, 193–210 (1995).

    Article 

    Google Scholar 

  • Buezas, G., Becerra, F. & Vassallo, A. Cranial suture complexity in caviomorph rodents (Rodentia; Ctenohystrica). J. Morphol. 278, 1125–1136 (2017).

  • Shahar, R., Kraus, S., Monsonego-Ornan, E. & Fratzl, P. Mechanical function of a complex three-dimensional suture joining the bony elements in the shell of the red-eared slider turtle. MRS Online Proc. Libr. 1187, 1187–KK01 (2009).

    Article 

    Google Scholar 

  • Andersen, S. O. Insect cuticular sclerotization: a review. Insect Biochem. Mol. Biol. 40, 166–178 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Luquet, G. Biomineralizations: insights and prospects from crustaceans. ZooKeys 176, 103 (2012).

    Article 

    Google Scholar 

  • Paterson, J. R. & Edgecombe, G. D. The early Cambrian trilobite family emuellidae Pocock, 1970: systematic position and revision of Australian species. J. Paleontol. 80, 496–513 (2006).

    Article 

    Google Scholar 

  • Esteve, J., Marcé‐Nogué, J., Pérez‐Peris, F. & Rayfield, E. Cephalic biomechanics underpins the evolutionary success of trilobites. Palaeontology 64, 519–530 (2021).

    Article 

    Google Scholar 

  • Santini, F., Sorenson, L., Marcroft, T., Dornburg, A. & Alfaro, M. E. A multilocus molecular phylogeny of boxfishes (Aracanidae, Ostraciidae; Tetraodontiformes). Mol. Phylogenet. Evol. 66, 153–160 (2013).

  • Yang, W., Naleway, S. E., Porter, M. M., Meyers, M. A. & McKittrick, J. The armored carapace of the Boxfish. Acta Biomater. 23, 1–10 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Garner, S. N. et al. The role of collagen in the dermal armor of the boxfish. J. Mater. Res. Technol. 9, 13825–13841 (2020).

    Article 
    CAS 

    Google Scholar 

  • Marmo, F., Perricone, V., Cutolo, A., Daniela Candia Carnevali, M., Langella, C., Rosati, L. Flexible sutures reduce bending moments in shells: from the echinoid test to tessellated shell structures. R. Soc. Open Sci. 9, 211972 (2022).

  • Rivera, J. et al. Toughening mechanisms of the elytra of the diabolical ironclad beetle. Nature 586, 543–548 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rivera, J. et al. Structural design variations in beetle elytra. Adv. Funct. Mater. 31, 2106468 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rivera, J., Yaraghi, N., Arango, D., Zavattieri, P., Kisailus, D. Compression resistant designs from the exoskeleton of a tough beetle. Proceedings of the 21st International Conference on Composite Materials, August 20–25 (2017).

  • Montroni, D., et al. The Multiphasic Teeth of Chiton Articulatus, an Abrasion‐resistant and Self‐sharpening Tool for Hard Algae Collection. Adv. Funct. Mater. (2024).

  • Beniash, E., et al. The hidden structure of human enamel. Nat. Commun. 10 (2019).

  • Al-Mosawi, M., et al. Crystallographic texture and mineral concentration quantification of developing and mature human incisal enamel. Sci. Rep. 8. (2018).

  • Mao, J. J. Mechanobiology of craniofacial sutures. J. Dent. Res. 81, 810–816 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Miura, T. et al. Mechanism of skull suture maintenance and interdigitation. J. Anat. 215, 642–655 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alheit, B., Bargmann, S. & Reddy, B. D. Computationally modelling the mechanical behaviour of turtle shell sutures—a natural interlocking structure. J. Mech. Behav. Biomed. Mater. 110, 103973 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Li, Y., Ortiz, C. & Boyce, M. C. A generalized mechanical model for suture interfaces of arbitrary geometry. J. Mech. Phys. Solids 61, 1144–1167 (2013).

    Article 

    Google Scholar 

  • Li, Y., Ortiz, C. & Boyce, M. C. Stiffness and strength of suture joints in nature. Phys. Rev. E 84, 062904 (2011).

    Article 

    Google Scholar 

  • Liu, L. et al. The effects of morphological irregularity on the mechanical behavior of interdigitated biological sutures under tension. J. Biomech. 58, 71–78 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Wu, D. et al. Stiffness and toughness of soft/stiff suture joints in biological composites. Appl. Math. Mech. 43, 1469–1484 (2022).

    Article 

    Google Scholar 

  • Alheit, B., Bargmann, S. & Reddy, B. How suture networks improve the protective function of natural structures: a multiscale investigation. Acta Biomater. 145, 283–296 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lee, N. et al. Stress wave mitigation at suture interfaces. Biomed. Phys. Amp Eng. Express 3, 035025 (2017).

    Article 

    Google Scholar 

  • Zhang, J. & An, B. Contribution of energy dissipation to dynamic fracture resistance of the turtle carapace. Eng. Fract. Mech. 290, 109505 (2023).

    Article 

    Google Scholar 

  • Zavattieri, P. D., Hector, L. G. & Bower, A. F. Cohesive zone simulations of crack growth along a rough interface between two elastic-plastic solids. Eng. Fract. Mech. 75, 4309–4332 (2008).

    Article 

    Google Scholar 

  • Gibbons, M. M. & Chen, D. A. Bio-inspired sutures: using finite element analysis to parameterize the mechanical response of dovetail sutures in simulated bending of a curved structure. Biomimetics 7, 82 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lazarus, B. S., Velasco-Hogan, A., Gómez-del Río, T., Meyers, M. A. & Jasiuk, I. A review of impact resistant biological and bioinspired materials and structures. J. Mater. Res. Technol. 9, 15705–15738 (2020).

    Article 
    CAS 

    Google Scholar 

  • Huang, W. et al. Nanoarchitected tough biological composites from assembled chitinous scaffolds. Acc. Chem. Res. 55, 1360–1371 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Malik, I. A., Mirkhalaf, M. & Barthelat, F. Bio-inspired “Jigsaw”-like interlocking sutures: modeling, optimization, 3D printing and testing. J. Mech. Phys. Solids 102, 224–238 (2017).

    Article 

    Google Scholar 

  • Nikookar, N. Design through digital making: a human-system collaboration framework. Master’s Thesis, Carnegie Mellon University, Pittsburgh, PA. (2020).

  • Menges, A. et al. ICD/ITKE Research Pavillion 2015-16 Project Report. (Presskit: Stuttgart, Germany, 2016). https://www.itke.uni-stuttgart.de/research/icd-itke-research-pavilions/icd-itke-research-pavilion-2015-16/.

  • Bouligand, Y. On a twisted fibrillar arrangement common to several biological structures. C R Hebd. Séances Acad. Sci. Sci. Nat. 261, 4864 (1965).

    CAS 

    Google Scholar 

  • Zimmermann, E. A. et al. Mechanical adaptability of the bouligand-type structure in natural dermal armour. Nat. Commun. 4, 1–7 (2013).

    Article 

    Google Scholar 

  • Cheng, C., Shao, Z. & Vollrath, F. Silk fibroin-regulated crystallization of calcium carbonate. Adv. Funct. Mater. 18, 2172–2179 (2008).

    Article 
    CAS 

    Google Scholar 

  • Sachs, C., Fabritius, H. & Raabe, D. Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus Americanus. J. Struct. Biol. 161, 120–132 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cheng, L., Wang, L. & Karlsson, A. M. Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica. J. Mater. Res. 24, 3253–3267 (2009).

    Article 
    CAS 

    Google Scholar 

  • Libby, E. et al. Light reflection by the cuticle of C. Aurigans scarabs: a biological broadband reflector of left handed circularly polarized light. J. Opt. 16, 082001 (2014).

    Article 

    Google Scholar 

  • Campos-Fernández, C., Azofeifa, D. E., Hernández-Jiménez, M., Ruiz-Ruiz, A. & Vargas, W. E. Visible light reflection spectra from cuticle layered materials. Opt. Mater. Express 1, 85–100 (2011).

    Article 

    Google Scholar 

  • Jewell, S. A., Vukusic, P. & Roberts, N. W. Circularly polarized colour reflection from helicoidal structures in the beetle plusiotis boucardi. N. J. Phys. 9, 99 (2007).

    Article 

    Google Scholar 

  • Bruet, B. J. F., Song, J., Boyce, M. C. & Ortiz, C. Materials design principles of ancient fish armour. Nat. Mater. 7, 748–756 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yin, S. et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites. Compos. Sci. Technol. 205, 108650 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yang, W. et al. Protective role of Arapaima Gigas fish scales: structure and mechanical behavior. Acta Biomater. 10, 3599–3614 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Sun, J. & Bhushan, B. Structure and mechanical properties of beetle wings: a review. RSC Adv. 2, 12606 (2012).

    Article 
    CAS 

    Google Scholar 

  • Taylor, J. R. A. & Patek, S. N. Ritualized fighting and biological armor: the impact mechanics of the Mantis Shrimp’s Telson. J. Exp. Biol. 213, 3496–3504 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Weaver, J. C. et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Guarín-Zapata, N., Gomez, J., Yaraghi, N., Kisailus, D. & Zavattieri, P. D. Shear wave filtering in naturally-occurring bouligand structures. Acta Biomater. 23, 11–20 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Yaraghi, N. A. et al. A sinusoidally architected helicoidal biocomposite. Adv. Mater. 28, 6835–6844 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yaraghi, N. A. et al. The stomatopod telson: convergent evolution in the development of a biological shield. Adv. Funct. Mater. 29, 1902238 (2019).

    Article 

    Google Scholar 

  • Suksangpanya, N., Yaraghi, N. A., Kisailus, D. & Zavattieri, P. Twisting cracks in bouligand structures. J. Mech. Behav. Biomed. Mater. 76, 38–57 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Suksangpanya, N., Yaraghi, N. A., Pipes, R. B., Kisailus, D. & Zavattieri, P. Crack twisting and toughening strategies in bouligand architectures. Int. J. Solids Struct. 150, 83–106 (2018).

    Article 

    Google Scholar 

  • Grunenfelder, L. K. et al. Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles. Adv. Mater. 30, 1705295 (2018).

    Article 

    Google Scholar 

  • Zaheri, A. Convergent evolution in biological lamellar systems: multiscale structures and mechanics. Ph.D. Diss. (Northwestern University, 2019).

  • Launey, M. E., Buehler, M. J. & Ritchie, R. O. On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40, 25–53 (2010).

    Article 
    CAS 

    Google Scholar 

  • Kolednik, O., Predan, J., Fischer, F. D. & Fratzl, P. Bioinspired design criteria for damage-resistant materials with periodically varying microstructure. Adv. Funct. Mater. 21, 3634–3641 (2011).

    Article 
    CAS 

    Google Scholar 

  • He, M. & Hutchinson, J. W. Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25, 1053–1067 (1989).

    Article 

    Google Scholar 

  • Greenfeld, I., Kellersztein, I. & Wagner, H. D. Nested helicoids in biological microstructures. Nat. Commun. 11, 224 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cheng, L., Thomas, A., Glancey, J. L. & Karlsson, A. M. Mechanical behavior of bio-inspired laminated composites. Compos. A 42, 211–220 (2011).

    Article 

    Google Scholar 

  • Grunenfelder, L. K. et al. Bio-inspired impact-resistant composites. Acta Biomater. 10, 3997–4008 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Grunenfelder, L. K., Herrera, S. & Kisailus, D. Crustacean-derived biomimetic components and nanostructured composites. Small 10, 3207–3232 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rivera, J., Yaraghi, N. A., Huang, W., Gray, D. & Kisailus, D. Modulation of impact energy dissipation in biomimetic helicoidal composites. J. Mater. Res. Technol. 9, 14619–14629 (2020).

    Article 
    CAS 

    Google Scholar 

  • Koizumi, H. et al. Surface roughness and gloss of current CAD/CAM resin composites before and after toothbrush abrasion. Dent. Mater. J. 34, 881–887 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nan, N., DeVallance, D. B., Xie, X. & Wang, J. The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites. J. Compos. Mater. 50, 1161–1168 (2016).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, L. H. et al. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact. Compos. Part Appl. Sci. Manuf. 84, 224–235 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kisailus, D., Milliron, G. Shock and impact resistant materials. US Pat. No. 9,452,587 September 27, (2016).

  • Bert, A., Mencattelli, L., Kisailus, D., Wasilenkoff, C. High impact-resistant, reinforced fiber for leading edge protection of aerodynamic structures. US Pat. No. 11,952,103, April 9 (2024).

  • McCarville, D., Wasilenkoff, C., Des Ouches, P. J., Kisailus, D. Shock and impact resistant structures. US Pat. No. 11,376,812, July 5, (2022).

  • Helicoid Industries. https://www.helicoidind.com

  • Liu, J., Li, S., Fox, K. & Tran, P. T. 3D concrete printing of bioinspired bouligand structure: a study on impact resistance. Addit. Manuf. 50, 102544 (2022).

    Google Scholar 

  • Pievani, T. The Natural History of Imperfection (Raffaello Cortina Editore, 2021).

  • Hamm, C. E. et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421, 841–843 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wilkie, I. C. Mutable collagenous tissue: overview and biotechnological perspective. Echinodermata 39, 221–250 (2005).

    Article 
    CAS 

    Google Scholar 

  • Weiner, S. Biomineralization: a structural perspective. J. Struct. Biol. 163, 229–234 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 41, 21–40 (2011).

    Article 
    CAS 

    Google Scholar 

  • Weiner, S. Organization of organic matrix components in mineralized tissues. Am. Zool. 24, 945–951 (1984).

    Article 
    CAS 

    Google Scholar 

  • Suzuki, M. & Nagasawa, H. Mollusk shell structures and their formation mechanism. Can. J. Zool. 91, 349–366 (2013).

    Article 
    CAS 

    Google Scholar 

  • Ferrara, M. A. et al. Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: micro-optics from mother nature. PLoS One 9, e103750 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oxman, N. Material-based design computation. Ph.D. Diss., Massachusetts Institute of Technology, Boston, MA (2010).

  • deVries, M. S. The role of feeding morphology and competition in governing the diet breadth of sympatric stomatopod crustaceans. Biol. Lett. 13, 20170055 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahyong, S. T. & Harling, C. The phylogeny of the stomatopod Crustacea. Aust. J. Zool. 48, 607–642 (2000).

    Article 

    Google Scholar 

  • Koga, C. & Rouse, G. W. Mitogenomics and the phylogeny of mantis shrimps (Crustacea: Stomatopoda). Diversity 13, 647 (2021).

    Article 
    CAS 

    Google Scholar 

  • Peterman, D. J. et al. Buoyancy control in ammonoid cephalopods refined by complex internal shell architecture. Sci. Rep. 11, 8055 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • CCM Hochey Industry.

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.